研究生: |
林熹 Lin, Hsi |
---|---|
論文名稱: |
3-烷基噻吩之酸催化共聚合與極性溶劑對聚合之影響 The Effects of Polar Solvents on Acid-Catalyzed Chain Growth Polymerization and Block Polymerization of 3-Alkylthiophenes |
指導教授: |
韓建中
Han, Chien-Chung |
口試委員: |
蔡易州
Tsai, Yi-Chou 李志聰 Lee, Jyh-Tsung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 164 |
中文關鍵詞: | 3-烷基噻吩 、酸催化聚合 、酸催化聚合之溶劑效應 、3-烷基噻吩之共聚和 |
外文關鍵詞: | 3-alkylthiophenes, acid-catalyzed polymerization, solvent effects of acid-catalyzed polymerization, block polymerizations of 3-alkylthiophenes |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統的天然高分子材料皆為絕緣體,但自從1976年Hideki Shirakawa、Alan J. Heeger與Alan Graham MacDiarmid三位教授以碘摻雜反式聚乙炔後,由於其導電效果幾乎與半導體相近,因此引發了學界研究導電高分子之熱潮。而本實驗室開發之以酸催化陽離子聚合法,能在沒有金屬催化劑之幫助下合成出導電高分子聚噻吩,並藉由對側鏈進行修飾大幅使聚噻吩之溶解度大幅提升。
本篇論文第一部分中,先合成出2-haloo-3-(4-(tert-butyl)benzyl)thiophene,希望透過單體側鏈設計以增加高分子產品對於不同溶劑之溶解度,並以不同的2號位取代基 (Br、Cl) 進行聚合情形的探討。接著我們嘗試提高聚合溶劑極性,並比較不同極性之溶劑對酸催化聚合系統的影響,發現提高溶劑極性能穩定陽離子活性中心,增加鏈增長速率,因此可以大幅提升聚合產物之分子量。最後我們更發現溶劑結構與單體側鏈結構有密切的關係,若是倆者結構差異過大,會導致單體分布不均且容易產生鏈轉移現象,造成產物PDI值極高。
本篇論文之第二部分中則藉由重複加入單體的實驗,證實了酸催化聚合系統確實有活性聚合之特徵。並且也利用此一特徵成功合成出由兩種不同單體組成之嵌端共聚物,最後利用MALDI-TOF與Isotope Pattern鑑定共聚物之結構。未來希望能夠由本篇論文開始,利用活性聚合之特徵合成出更多不同單體組成之嵌端共聚物,或是具有不同官能基之聚噻吩共聚物,進而提升產物的溶解度與應用性。
While natural polymers such as cotton and rubber were classified as insulating material traditionally, iodine-dopped trans-polyacetylene, was found by Hideki Shirakawa, Alan J. Heeger and Alan Graham MacDiarmid in 1976 to display the similar conductivity like semiconductor material . Since that time, many groups dedicated to the research of conducting polymer. As for our group, we engaged in acid-catalyzed chain-growth polymerization of conductive polythiophenes, which enables polymerization without transition metal catalyst.
Firstly we conducted polymerizations of 2-halo-3-(4-(tert-butyl)benzyl)thio-phene with different halogen leaving group and observe the influence of different leaving groups on the polymerization. Moreover, we found that polymer products with much higher Mn and Mw can be successfully synthesized in polar solvent, which means enhancement of polarity is capable of stabilizing cationic propagation species and increasing propagation rate. In the end of this chapter, the structural interactions between side-chain of polythiophenes and solvent were found to have strong influence on molecular weight, PDI and yield of the polymer product.
In the second part, we successfully demonstrated the characteristic of living polymerization in acid-catalyzed system by adding monomers repeatedly. Further-more, block-copolymer, composed of two different monomers, was synthesized based on the behavior of living polymerization, and the product was identified by MALDI-TOF and Isotope Pattern. We look forward to more copolymer products which comprise distinct functional groups in the future.
1. Shirakawa, H.; Ikeda, S., Polym. J., 1971, 2, 231-244.
2. Ito, T.; Shirakawa, H.; Ikeda, S., J. Polym. Sci., Part A: Polym. Chem., 1974, 12, 11-20.
3. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J., J. Chem. Soc., Chem. Commun., 1977, 578-580.
4. Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; MacDiarmid, A. G., Phys. Rev. Lett., 1977, 39, 1098-1101.
5. Das, T. K., Prusty, S. Polym. –Plast. Technol. 2012, 51, 1487
6. Balint, R.; Cassidy, N. J.; Cartmell, S. H., Acta Biomaterialia, 2014, 10, 2341-2353.
7. Dai, L., Intelligent macromolecules for smart devices: from materials synthesis to device applications. Springer Science & Business Media: 2004.
8. Lange U., Roznyatovskaya N.V., Mirsky V.M. Analytica Chimica Acta, 2008, 614 (1), 1-26.
9. Mehmood U., Al-Ahmed A., Hussein I.A. Renewable and Sustainable Energy Reviews, 2016, 57, 550-561.
10. Inzelt, G., Conducting Polymers: A New Era in Electrochemistry, Springer Science & Business Media: Germany, 2008.
11. Mammone R. J.; Kaner R. B.; Porter Lord; Pethig R.; Heeger A. J.; Rosseinsky D. R., Philosophical Transactions of the Royal Society of London. Series A, 1985, 314, 1528.
12. Jérome1. D.; Mazaud1. A.; Ribault1. M.; Bechgaard. K., J. Physique Lett., 1980, 41, 95-98.
13. Fichou, D.; Horowitz, G., Encyclopedia of Materials: Science and Technology, 2001, 5748-5757.
14. McCullough, R. D., Adv. Mater., 1998, 10, 93-116.
15. Osaka, I.; McCullough, R. D., Acc. Chem. Res., 2008, 41, 1202-1214.
16. Sheina, E. E.; Khersonsky, S. M.; Jones, E. G.; McCullough, R. D., Chem. Mater., 2005, 17, 3317– 3319.
17. McCullough, R. D.; Williams, S. P., J. Am. Chem. Soc., 1993, 115, 11608– 11609.
18. Odian. G., Principles of Polymerization, 4th ed., Wiley Interscience, New York, 2004.
19. Su. W.-F., Principles of Polymer Design and Synthesis., Springer, Berlin, 2013.
20. Han, C. C.*; Arumugam, B. “Method for forming conjugated heteroaromatic homopolymer and copolymer, and products thereof”, US patent application 13/662, 533 (Oct 28, 2012), US 2014-0121326 A1 (May 1, 2014).
21. Bonillo, B.; Swager, T. M., J. Am. Chem. Soc., 2012, 134, 18916-18919.
22. Balasubramanian, A.; Ku, T.-C.; Shih, H.-P.; Suman, A.; Lin, H.-J.; Shih, T.-W.; Han, C.-C., Polym. Chem., 2014, 5, 5928-5941.
23. 涂毓茹. 碩士論文. 國立清華大學, 2018.
24. 郭芳伶. 碩士論文. 國立清華大學, 2015.
25. 陳冠亘. 碩士論文. 國立清華大學, 2017.
26. Ziegler. K., Angew. Chem., 1936, 49, 499-502.
27. 劉岱杰. 碩士論文. 國立清華大學, 2017.
28. 廖家翊. 碩士論文. 國立清華大學, 2019.
29. 張維倫. 碩士論文. 國立清華大學, 2018.
30. Burke, J., AIC Book and Paper Group Annual., 1984, 3, 13.
31. Hansen, C. M., Hansen Solubility Parameters: A User's Handbook, 2nd ed., CRC Press, New York, 2007
32. Pepper, D. C.; Reilly, P. J., J. Polym. Sci., 1962, 58, 639.
33. Szwarc, M.; Levy, M.; Milkovich, R., J. Am. Chem. Soc., 1956, 11, 2656-2657.
34. Webster, O. W., Science, 1991, 251, 887-893.