研究生: |
施正倫 Shih, Cheng-Lun |
---|---|
論文名稱: |
高選擇性隔膜結構的設計與三維列印 Design and 3D Printing of High-Selectivity Semipermeable Membrane Structures |
指導教授: |
蘇育全
Su, Yu-Chuan |
口試委員: |
陳宗麟
陳紹文 |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2024 |
畢業學年度: | 113 |
語文別: | 中文 |
論文頁數: | 113 |
中文關鍵詞: | 高選擇性 、隔膜 、三維列印 |
外文關鍵詞: | High-Selectivity, Semipermeable, Membrane |
相關次數: | 點閱:50 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統噴塗法製造的商用防水透氣膜,其滲透反射係數通常較低且製造時間較長,
本研究運用三維光聚合固化列印技術製造具有較高滲透反射係數的隔膜結構,相比
傳統噴塗法可更快速成形和降低成本。該隔膜在光聚合固化後為凝膠結構(PEG
GEL),固體部分為高分子結構,液體部分為聚氧化乙烯(PEG)和聚丙二醇
(PPG),通過增加高分子結構中官能基環氧乙烷(EO)的比例和更改凝膠(GEL)中
液體:聚氧化乙烯(PEG)和聚丙二醇(PPG)彼此之間的比例,在光聚合固化後
微結構將受到這些比例的影響從而改變其滲透率和選擇性。本研究採用實驗室自組
光機,使用 405nm波長光源使高分子材料光聚合固化,製作出僅一立方公分的裝置。
為提升純水滲透速率,重點聚焦於隔膜的化學組成與多孔微結構。透過調整官能基
環氧乙烷(EO)在高分子材料中所佔比例進而影響隔膜的透水性能,結果顯示,不同
官能基環氧乙烷(EO)比例可造成 20%的滲透反射係數差異。當配方中液體(PEG 和
PPG)的比例在 45%至 60%之間時,相較於商用防水透氣膜滲透反射係數提升 1.6 倍,
滲透反射係數可達 0.26以上;超過 60%時,滲透反射係數下降,顯示當液體含量過
多會造成相分離導致微結構孔徑過大。反之,當固體材料比例高於 55%時,高分子
密度增加導致水穿透隔膜速率下降。最後,透過三維列印技術設計並製造了多種腔
體結構,其中鰭片型腔體透過設計柵欄方式降低腔體厚度並設計鰭片結構增加表面
積,顯著提升了整體透水速率與運輸效率,經過設計後的總透水表面積為
356.88mm²,相較於相同體積下的正立方體,表面積提升 13%,透水速率達
0.08mm³/s,整體運輸速率提升 20%。
The commercial waterproof breathable membranes manufactured using traditional spray coating methods typically have a lower permeation reflection coefficient and require longer production times. This study employs three-dimensional photopolymerization curing printing technology to produce membrane structures with a higher permeation reflection coefficient, allowing for faster formation and reduced costs compared to traditional spray methods. After photopolymerization curing, the membrane forms a gel structure (PEG GEL), with the solid part consisting of a polymer structure and the liquid part comprising polyethylene glycol (PEG) and polypropylene glycol (PPG). By increasing the proportion of the functional group ethylene oxide (EO) in the polymer structure and adjusting the ratio of liquid PEG to PPG in the gel, the microstructure after photopolymerization curing will be affected by these proportions, thereby altering its permeability and selectivity.
This study utilized a self-assembled laboratory optical machine with a 405 nm light source to photopolymerize and cure polymer materials, creating a device as small as one cubic centimeter. To enhance the pure water permeation rate, the focus was on the chemical composition and porous microstructure of the membrane. By adjusting the proportion of the functional group EO in the polymer materials, the membrane's water permeation performance was influenced. Results showed that different EO ratios caused up to a 20% difference in the permeation reflection coefficient. When the liquid (PEG and PPG) ratio in the formula ranged between 45% and 60%, the permeation reflection coefficient increased by 1.6 times compared to commercial waterproof breathable membranes, reaching a coefficient of over 0.26. However, when the liquid content exceeded 60%, the permeation reflection coefficient decreased, indicating that excessive liquid content led to phase separation, resulting in overly large microstructural pore sizes. Conversely, when the solid material ratio exceeded 55%, the increased polymer density caused the water permeation rate through the membrane to decrease.
[1] Cath, Tzahi Y., Amy E. Childress, and Menachem Elimelech. "Forward osmosis: Principles, applications, and recent developments." Journal of membrane science 281.1-2 ,2006, pp. 70-87..
[2] Lomax, G. R. "The Design of Waterproof, Water Vapour-Permeable Fabrics." Journal of Coated Fabrics, vol. 15, no. 1, 2016, pp. 40-66.
[3] 游彬彥. 高壓高流速滲透驅動裝置的開發與三維列印. Diss., 國立清華大學, 2022.
[4] Mulder, Marcel. Basic Principles of Membrane Technology. Springer Science & Business Media, 2012.
[5] Wenten, I. G., and Jl Ganesha. "Ultrafiltration in Water Treatment and Its Evaluation as Pre-treatment for Reverse Osmosis System." Institut Teknologi Bandung, 1996.
[6] 葉雲鵬, and 鄭正元. "智慧機械與數位製造 3D 列印的發展." 科儀新知, vol. 222, 2020, pp. 92-103.
[7] 台灣天馬科技股份有限公司. Formlabs, https://formlabs.com/.
[8] Car, Anja, et al. "PEG Modified Poly (amide-b-ethylene oxide) Membranes for CO2 Separation." Journal of Membrane Science, vol. 307, no. 1, 2008, pp. 88-95.
[9] Shang, Luoran, et al. "Osmotic Pressure-triggered Cavitation in Microcapsules." Lab on a Chip, vol. 16, no. 2, 2016, pp. 251-255.
[10] Miller, Daniel J., et al. "Surface Modification of Water Purification Membranes." Angewandte Chemie International Edition, vol. 56, no. 17, 2017, pp. 4662-4711.
[11] Durmaz, S., and O. Okay. "Phase Separation During the Formation of Poly (acrylamide) Hydrogels." Polymer, vol. 41, no. 15, 2000, pp. 5729-5735.
[12] Li, Minggan, et al. "Fabrication of Highly Porous Nonspherical Particles Using Stop-flow Lithography and the Study of Their Optical Properties." Langmuir, vol. 33, no. 1, 2017, pp. 184-190.
[13] Wu, Yuan-Hsuan, et al. "Water Uptake, Transport, and Structure Characterization in Poly (ethylene glycol) Diacrylate Hydrogels." Journal of Membrane Science, vol. 347, nos. 1-2, 2010, pp. 197-208.
[14] Wang, Ling, et al. "Enhancing Water Permeability and Antifouling Performance of Thin-film Composite Membrane by Tailoring the Support Layer." Desalination, vol. 516, 2021, p. 115193.
[15] Car, Anja, et al. "PEG Modified Poly (amide-b-ethylene oxide) Membranes for CO2 Separation." Journal of Membrane Science, vol. 307, no. 1, 2008, pp. 88-95.
[16] Durmaz, S., and O. Okay. "Phase Separation During the Formation of Poly (acrylamide) Hydrogels." Polymer, vol. 41, no. 15, 2000, pp. 5729-5735.
[17] Robeson, Lloyd M. "Correlation of Separation Factor versus Permeability for Polymeric Membranes." Journal of Membrane Science, vol. 62, no. 2, 1991, pp. 165-185.
[18] Dong, Zheqin, et al. "3D Printing of Inherently Nanoporous Polymers via Polymerization-induced Phase Separation." Nature Communications, vol. 12, no. 1, 2021, p. 247.
[19] Wang, Zhenwu, et al. "Tough, Transparent, 3D-printable, and Self-healing Poly (ethylene glycol)-gel (PEGgel)." Advanced Materials, vol. 34, no. 11, 2022, p. 2107791.
[20] Wang, Zhenwu, et al. "Tough PEGgels by In Situ Phase Separation for 4D Printing." Advanced Functional Materials, vol. 34, no. 20, 2024, p. 2300947.
[21] Gebben, B. "A Water Vapor-permeable Membrane from Block Copolymers of Poly (butylene terephthalate) and Polyethylene Oxide." Journal of Membrane Science, vol. 113, no. 2, 1996, pp. 323-329.
[22] Metz, S. J., et al. "Thermodynamics of Water Vapor Sorption in Poly (ethylene oxide) Poly (butylene terephthalate) Block Copolymers." The Journal of Physical Chemistry B, vol. 107, no. 49, 2003, pp. 13629-13635.
[23] Lin, Haiqing, and Benny D. Freeman. "Gas Solubility, Diffusivity, and Permeability in Poly (ethylene oxide)." Journal of Membrane Science, vol. 239, no. 1, 2004, pp. 105-117.
[24] Metz, Sybrand J., et al. "Transport of Water Vapor and Inert Gas Mixtures through Highly Selective and Highly Permeable Polymer Membranes." Journal of Membrane Science, vol. 251, nos. 1-2, 2005, pp. 29-41.
[25] Lin, Haiqing, and Benny D. Freeman. "Gas and Vapor Solubility in Cross-linked Poly (ethylene glycol diacrylate)." Macromolecules, vol. 38, no. 20, 2005, pp. 8394-8407.
[26] ResearchMFC. “TG Glass Transition Temperature.” ResearchMFG, 2016, https://www.researchmfg.com/2016/08/tg-glass-transition-temperature/.
[27] Bi, Xiangdong, and Aiye Liang. "In Situ-forming Cross-linking Hydrogel Systems: Chemistry and Biomedical Applications." Emerging Concepts in Analysis and Applications of Hydrogels, vol. 86, 2016, pp. 541-547.
[28] Deng, Yuhao, et al. "Urethane Acrylate-based Photosensitive Resin for Three-dimensional Printing of Stereolithographic Elastomer." Journal of Applied Polymer Science, 2020, p. 49294.
[29] Metz, S.J., van der Vegt, N.F.A., Mulder, M.H.V., and Wessling, M. "Thermodynamics of Water Vapor Sorption in Poly (ethylene oxide) Poly (butylene terephthalate) Block Copolymers." The Journal of Physical Chemistry B, vol. 107, no. 49, 2003, pp. 13629-13635.
[30] Lin, Haiqing, et al. "The Effect of Cross-linking on Gas Permeability in Cross-linked Poly (ethylene glycol diacrylate)." Macromolecules, vol. 38, no. 20, 2005, pp. 8381-8393.
[31] Svensson, Mårten, Paschalis Alexandridis, and Per Linse. "Phase Behavior and Microstructure in Binary Block Copolymer/Selective Solvent Systems: Experiments and Theory." Macromolecules, vol. 32, no. 3, 1999, pp. 637-645.
[32] Svensson, Birgitta, Ulf Olsson, and Paschalis Alexandridis. "Self-assembly of Block Copolymers in Selective Solvents: Influence of Relative Block Size on Phase Behavior." Langmuir, vol. 16, no. 17, 2000, pp. 6839-6846.