簡易檢索 / 詳目顯示

研究生: 周嘉政
Zhou, Jiazheng
論文名稱: Routing in Interconnection Networks and Its Applications
連結網路中的繞徑方法及其應用
指導教授: 鍾葉青
Chung, Yeh-Ching
口試委員: 鍾葉青
Chung, Yeh-Ching
金仲達
許健平
李哲榮
劉邦鋒
王建民
賴冠州
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 93
中文關鍵詞: Tree-turn 繞徑不規則網路拓樸多點傳播fat-tree二維陣列網路InfiniBand聯集運算叢集系統連結網路階層式對應高效能計算
外文關鍵詞: Tree-turn routing, irregular topology, multicast, fat-tree, 2-D mesh, InfiniBand, union operation, cluster, interconnection network, hierarchical mapping, HPC
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Supercomputers can be made of mainframes or network-based distributed systems like clusters. Nowadays, the trend is towards cost-effective network-based distributed computing systems since they consist of commodity components, such as personal computers and high speed networks. Therefore, the routing in clusters is the key issue that provides not only high throughput but also low latency networks. We address both irregular and regular topology networks. For irregular topology, we propose the Tree-turn model as a tool to develop the routing algorithms. Based on the Tree-turn model, we derive the deadlock-free routing algorithm, Tree-turn routing, for irregular topology. There are three phases to construct Tree-turn routing. First, build up a coordinated tree for a given topology. Second, construct the communication graph based on the topology and the corresponding coordinated tree. Third, set up the forwarding table by using the all-pairs shortest path algorithm according to the prohibited turns derived from the Tree-turn model and the directions of the channels in communication graph. For regular topology, we propose multicast algorithms for fat-tree-based and 2-D mesh networks. Besides, since InfiniBand Architecture (IBA) provides hardware supported multicast, our algorithms can take advantage of this feature and improve the performance. The proposed multicast scheme consists of three sub-schemes, the processing node addressing scheme, the path selection scheme, and the forwarding table assignment scheme. To improve the performance, we also consider the usage of virtual lanes and the mapping of service level to virtual lane. Moreover, as the high performance computing systems scale up, mapping the tasks of a parallel application onto physical processors to allow efficient communication becomes one of the critical performance issues. We propose a hierarchical mapping algorithm to address this issue. Experimental tests and analyses of the proposed methods are conducted in this dissertation. The results show that the proposed methods can achieve good performance, and we get some encouraged remarks regarding to the proposed methods for routing in interconnection networks and mapping for HPC applications.


    超級電腦可以是由傳統的大型主機電腦組成,或是由網路連接的分散式系統如叢集系統組成。現今趨勢已走向有成本效益的網路連接分散式系統,因為這些系統包含的元件如個人電腦及高速網路不必是客制或特殊的元件。因此,在叢集系統中的繞徑演算法會是主要的關鍵,要能提供高輸出以及低延遲的網路效能。我們將會針對不規則的以及規則的網路拓樸來提出解決方案。對於不規則的網路拓樸,我們提出了Tree-turn模型;此模型可做為發展繞徑演算法的工具。以Tree-turn模型基礎,我們衍生了對於不規則網路拓樸中無死結的繞徑演算法,Tree-turn繞徑。Tree-turn繞徑有三個步驟組成。第一,對於一個網路拓樸,建立一個座標樹。第二,基於網路拓樸及座標樹,建立一個通訊圖。第三,根據Tree-turn模型中的禁止轉彎以及通訊圖中的通訊管道的方向,用最短路徑演算法設定轉送表。對於規則的網路拓樸,我們在fat-tree以及二維陣列網路中提出了多點傳播演算法。此外,由於InfiniBand架構提供了硬體支援的多點傳播,我們的演算法也能利用這個特性來改進效能。我們提出的多點傳播方法有三個機制,包含了處理結點的定位機制,路徑選擇機制,以及轉送表設定機制。為了增進效能,我們也考慮了虛擬路徑以及服務層級對應虛擬路徑的機制。另外,當高效能計算系統的規模變大時,為了讓傳輸更有效率,從平行程式工作單元到實體處理器的對應方法也成為決定效能的關鍵之一。為了解決這個問題,我們提出了一個階層式的對應演算法。在這論文中,我們對於所提出的方法都有實驗來測試驗證並分析。對於連結網路以及高效計算中對應方法,結果都顯示我們所提的方法能達成好的效果。

    摘要 ................................................................................................................................. i Abstract ......................................................................................................................... ii Acknowledgments .......................................................................................................iii Contents ....................................................................................................................... iv List of Figures .............................................................................................................. vi Chapter 1 Introduction ............................................................................................ 1 1.1 Motivation of the Dissertation ......................................................................... 1 1.2 Contribution of the Dissertation ...................................................................... 5 1.3 Organization of the Dissertation ..................................................................... 8 Chapter 2 Related Work ....................................................................................... 10 2.1 Routing for Irregular Topology ..................................................................... 10 2.2 Multicast in Fat-Tree-Based InfiniBand Networks ....................................... 11 2.3 Multicast in 2-D Mesh InfiniBand Networks ................................................ 12 2.4 Mapping for HPC Applications ..................................................................... 14 Chapter 3 Routing for Irregular Topology - Tree-Turn Routing ................... 16 3.1 Preliminaries .................................................................................................. 16 3.2 The Tree-turn Model ..................................................................................... 20 3.3 The Tree-turn Routing .................................................................................. 27 3.4 Experimental Test ......................................................................................... 30 Chapter 4 Multicast in Fat-Tree-Based InfiniBand Networks .......................... 35 4.1 The Processing Node Addressing Scheme .................................................... 40 4.2 The Path Selection Scheme ........................................................................... 41 4.3 The Forwarding Table Assignment Scheme ................................................. 43 4.3.1 The One-to-one Forwarding Table Assignment .................................... 43 4.3.2 The Multicast Forwarding Table Assignment Based on Union v Operations ............................................................................................................ 45 4.4 Performance Evaluation ................................................................................ 45 Chapter 5 Multicast in 2-D Mesh InfiniBand Networks .................................... 51 5.1 The Node Addressing Scheme ...................................................................... 52 5.2 The Path Selection Scheme ........................................................................... 53 5.3 The Forwarding Table Assignment Scheme ................................................. 56 5.3.1 The One-to-one Forwarding Table Assignment .................................... 56 5.3.2 The Multicast Forwarding Table Assignment Based on Union Operation 57 5.4 Performance Evaluation ................................................................................ 57 Chapter 6 Hierarchical Mapping for HPC Applications ................................... 66 6.1 Hierarchical Mapping Algorithm .................................................................. 66 6.1.1 Task Partitioning .................................................................................... 66 6.1.2 Initial Mapping ....................................................................................... 69 6.1.3 Fine Tuning ............................................................................................ 71 6.2 Performance Evaluation ................................................................................ 72 6.2.1 Applications ........................................................................................... 73 6.2.2 Supernode Size ....................................................................................... 77 6.2.3 Hierarchy ................................................................................................ 79 6.2.4 Supernode Geometry ............................................................................. 80 6.3 Discussion ..................................................................................................... 82 Chapter 7 Conclusions and Future Work ............................................................ 84 Bibliography ............................................................................................................... 87 VITA ............................................................................................................................ 93

    [1] The Sequoia Benchmark. https://asc.llnl.gov/sequoia/benchmarks/
    [2] Space-Filling Curves, Springer-Verlag, 1994.
    [3] The AMG Benchmark. https://asc.llnl.gov/sequoia/benchmarks/#amg
    [4] The Community Climate System Model (CCSM). http://www.cesm.ucar.edu/models/ccsm4.0/
    [5] PETSc. http://www.mcs.anl.gov/petsc/petsc-as/
    [6] Linux InfiniBand Project. http://infiniband.sourceforge.net
    [7] M. Ahmed and S. Bokhari, "Mapping with Space Filling Surfaces," IEEE Transactions on Parallel and Distributed Systems, vol. 18, pp. 1258-1269, 2007.
    [8] R. Aleliunas and A. L. Rosenberg, "On Embedding Rectangular Grids in Square Grids," IEEE Transactions on Computers, vol. C-31, pp. 907-913, 1982.
    [9] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. v. d. Vorst, Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, SIAM, 1987.
    [10] G. Bhanot, A. Gara, P. Heidelberger, E. Lawless, J. C. Sexton, and R. Walkup, "Optimizing Task Layout on the Blue Gene/L Supercomputer," IBM Journal of Research and Development, vol. 49, pp. 489-500, 2005.
    [11] A. Bhatele, E. Bohm, and L. V. Kale, "A Case Study of Communication Optimizations on 3D Mesh Interconnects," in Proceedings of the 15th International Euro-Par Conference on Parallel Processing, 2009, pp. 1015-1028.
    [12] A. Bhatele, G. Gupta, L. V. Kale, and I.-H. Chung, "Automated Mapping of Regular Communication Graphs on Mesh Interconnects," in Proceedings of International Conference on High Performance Computing (HiPC), 2010, pp. 10-18.
    [13] L. S. Blackford, J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, ScaLAPACK Users' Guide, Society for Industrial and Applied Mathematics, 1997.
    [14] C.-M. Chiang and L. M. Ni, "Deadlock-Free Multi-Head Wormhole Routing," in Proceedings of the First High Performance Computing-Asia, 1995.
    [15] A. A. Chien and H. K. Jae, "Planar-Adaptive Routing: Low-cost Adaptive Networks for Multiprocessors," in Proceedings of the 19th International Symposium on Computer Architecture, 1992, pp. 268-277.
    [16] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, McGraw-Hill, 1990.
    88
    [17] W. J. Dally and C. L. Seitz, "Deadlock-Free Message Routing in Multiprocessor Interconnection Networks," IEEE Transactions on Computers, vol. C-36, pp. 547-553, 1987.
    [18] R. F. DeMara and D. I. Moldovan, "Performance Indices for Parallel Marker-Propagation," in Proceedings of the International Conference on Parallel Processing, 1991, pp. 658-659.
    [19] D. Donglai and D. K. Panda, "Reducing Cache Invalidation Overheads in Wormhole Routed DSMs Using Multidestination Message Passing," in Proceedings of the International Conference on Parallel Processing, 1996, pp. 138-145 vol.1.
    [20] J. Duato, "On the Design of Deadlock-Free Adaptive Routing Algorithms for Multicomputers: Design Methodologies," in Proceedings of the Conference on Parallel Architectures and Languages Europe, 1991, pp. 390-405.
    [21] J. Duato, "A New Theory of Deadlock-Free Adaptive Routing in Wormhole Networks," IEEE Transactions on Parallel and Distributed Systems, vol. 4, pp. 1320-1331, 1993.
    [22] J. Duato, "A Theory of Deadlock-Free Adaptive Multicast Routing in Wormhole Networks," IEEE Transactions on Parallel and Distributed Systems, vol. 6, pp. 976-987, 1995.
    [23] J. Duato, "A New Theory of Deadlock-Free Adaptive Multicast Routing in Wormhole Networks," in Proceedings of the Fifth IEEE Symposium on Parallel and Distributed Processing, 1993, pp. 64-71.
    [24] J. Duato, S. Yalamanchili, and L. Ni, Interconnection Networks - An Engineering Approach, IEEE CS Press, 1997.
    [25] J. A. Ellis, "Embedding Rectangular Grids into Square Grids," IEEE Transactions on Computers, vol. 40, pp. 46-52, 1991.
    [26] M. Fiedler, "Algebraic Connectivity of Graphs," Czechoslovak Mathematical Journal, vol. 23, 1973.
    [27] C. Ge-Ming, "The Odd-Even Turn Model for Adaptive Routing," IEEE Transactions on Parallel and Distributed Systems, vol. 11, pp. 729-738, 2000.
    [28] C. Glass and L. M. Ni, "Maximally Fully Adaptive Routing in 2D Meshes," in Proceedings of International Conference on Parallel Processing, 1992, pp. 101--104.
    [29] C. J. Glass and L. M. Ni, "The Turn Model for Adaptive Routing," Journal of ACM, vol. 41, pp. 874-902, 1994.
    [30] C. J. Glass and L. M. Ni, "The Turn Model for Adaptive Routing," in Proceedings of the 19th International Symposium on Computer Architecture, 1992, pp. 278-287.
    [31] S. L. Graham, M. Snir, and C. A. Patterson, Getting Up To Speed: The Future Of Supercomputing., National Academies Press, 2005.
    [32] Y. Hao, I. H. Chung, and M. Jose, "Topology Mapping for Blue Gene/L Supercomputer," in Proceedings of the ACM/IEEE Conference on Supercomputing, 2006, pp. 52-52.
    89
    [33] K. Hwang, Advanced Computer Architecture – Parallelism, Scalability, Programmability, McGraw-Hill, 1993.
    [34] C. R. Jesshope, P. R. Miller, and J. T. Yantchev, "High Performance Communications In Processor Networks," in Proceedings of the 16th International Symposium on Computer Architecture, 1989, pp. 150-157.
    [35] Z. Jiang, J. Wu, and D. Wang, "A New Fault Information Model for Fault-Tolerant Adaptive and Minimal Routing in 3-D Meshes," in Proceedings of International Conference on Parallel Processing, 2005, pp. 500-507.
    [36] W. Jie, "A Fault-Tolerant and Deadlock-Free Routing Protocol in 2D Meshes Based on Odd-Even Turn Model," IEEE Transactions on Computers, vol. 52, pp. 1154-1169, 2003.
    [37] A. Jouraku, M. Koibuchi, and H. Amano, "An Effective Design of Deadlock-Free Routing Algorithms Based on 2D Turn Model for Irregular Networks," IEEE Transactions on Parallel and Distributed Systems, vol. 18, pp. 320-333, 2007.
    [38] A. Jouraku, M. Koibuchi, H. Amano, and A. Funahashi, "Routing Algorithms Based on 2D Turn Model for Irregular Networks," in Proceedings of International Symposium on Parallel Architectures, Algorithms and Networks (I-SPAN), 2002, pp. 254-259.
    [39] R. E. Kessler and J. L. Schwarzmeier, "Cray T3D: A New Dimension for Cray Research," in Proceedings of Compcon, 1993, pp. 176-182.
    [40] J. Kleinberg and E. Tardos, Algorithm Design, Addison Wesley, 2005.
    [41] M. Koibuchi, A. Funahashi, A. Jouraku, and H. Amano, "L-turn Routing: An Adaptive Routing in Irregular Networks," in Proceedings of International Conference on Parallel Processing, 2001, pp. 383-392.
    [42] M. Koibuchi, A. Jouraku, K. Watanabe, and H. Amano, "Descending Layers Routing: A Deadlock-Free Deterministic Routing Using Virtual Channels in System Area Networks with Irregular Topologies," in Proceedings of the International Conference on Parallel Processing, 2003, pp. 527-536.
    [43] S. Kumar and L. V. Kale, "Scaling All-to-All Multicast on Fat-tree Networks," in Proceedings of the Tenth International Conference on Parallel and Distributed Systems, 2004, p. 205.
    [44] V. Kumar and V. Singh, "Scalability of parallel algorithms for the all-pairs shortest path problem," in Proceedings of the International Conference on Parallel Processing 1991, pp. 124-138.
    [45] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes, Morgan Kaufmann Publishers, 1992.
    [46] C. E. Leiserson, "Fat-Trees: Universal Networks for Hardware-Efficient Supercomputing," IEEE Transactions on Computers, vol. 34, pp. 892-901, 1985.
    [47] D. Lenoski, J. Laudon, K. Gharachorloo, W. D. Weber, A. Gupta, J. Hennessy, M. Horowitz, and M. S. Lam, "The Stanford Dash multiprocessor," IEEE Computer, vol. 25, pp. 63-79, 1992.
    90
    [48] K. Li and R. Schaefer, "A Hypercube Shared Virtual Memory," in Proceedings of the International Conference on Parallel Processing, 1989, pp. 125-132.
    [49] X. Lin, P. K. Mckinley, and A. H. Esfahanian, "Adaptive Multicast Wormhole Routing in 2-D Mesh Multicomputers," in Proceedings of Parallel Architectures and Languages Europe, 1993, pp. 228-241.
    [50] X. Lin, P. K. McKinley, and L. M. Ni, "Performance Evaluation of Multicast Wormhole Routing in 2D-Mesh Multicomputers," in Proceedings of the International Conference on Parallel Processing, 1991, pp. 435-442.
    [51] X. Lin and L. M. Ni, "Multicast Communication in Multicomputer Networks," IEEE Transactions on Parallel and Distributed Systems, vol. 4, pp. 1105-1117, 1993.
    [52] X. Lin and L. M. Ni, "Deadlock-Free Multicast Wormhole Routing in Multicomputer Networks," in Proceedings of the 18th annual international symposium on Computer architecture, 1991, pp. 116-125.
    [53] D. H. Linder and J. C. Harden, "An Adaptive and Fault Tolerant Wormhole Routing Strategy for k-ary n-cubes," IEEE Transactions on Computers, vol. 40, pp. 2-12, 1991.
    [54] R. J. Littlefield, "Characterizing and Tuning Communications Performance for Real Applications," in Proceedings of the First Intel DELTA Applications Workshop, 1992.
    [55] J. Liu, A. R. Mamidala, and D. K. Panda, "Fast and Scalable MPI-Level Broadcast Using InfiniBand's Hardware Multicast Support," in Proceedings of the International Symposium on Parallel and Distributed Processing, 2004, p. 10.
    [56] P. Lopez, J. Flich, and J. Duato, "Deadlock-Free Routing in InfiniBand through Destination Renaming," in Proceedings of the International Conference on Parallel Processing, 2001, pp. 427-436.
    [57] O. Lysne, T. Skeie, S. A. Reinemo, and I. Theiss, "Layered Routing in Irregular Networks," IEEE Transactions on Parallel and Distributed Systems, vol. 17, pp. 51-65, 2006.
    [58] P. K. McKinley, H. Xu, E. T. Kalns, and L. M. Ni, "ComPaSS: Efficient Communication Services for Scalable Architectures," in Proceedings of the ACM/IEEE Conference on Supercomputing, 1992, pp. 478-487.
    [59] A. Mejia, J. Flich, J. Duato, S. A. Reinemo, and T. Skeie, "Segment-Based Routing: An Efficient Fault-Tolerant Routing Algorithm for Meshes and Tori," in Proceedings of the 20th International Symposium on Parallel and Distributed Processing, 2006, p. 10 pp.
    [60] A. Mejia, J. Flich, J. Duato, S. A. Reinemo, and T. Skeie, "Segment-Based Routing: An Efficient Fault-Tolerant Routing Algorithm for Meshes and Tori," in Proceedings of the 20th International Symposium on Parallel and Distributed Processing (IPDPS), 2006, p. 10 pp.
    [61] R. G. Melhem and G. Y. Hwang, "Embedding Rectangular Grids into Square Grids with Dilation Two," IEEE Transactions on Computers, vol. 39, pp.
    91
    1446-1455, 1990.
    [62] P. Mohapatra and V. Varavithya, "A Hardware Multicast Routing Algorithm for Two-Dimensional Meshes," in Proceedings of the Eighth IEEE Symposium on Parallel and Distributed Processing, 1996, pp. 198-205.
    [63] S. Nickmanesh, A. Movaghar, and F. Rookhosh, "Performance Modeling of Fault Tolerant Fully Adaptive Wormhole Switching 2-D Meshes in Presence of Virtual Channels," in Proceedings of the Third International Conference on Systems and Networks Communications, 2008, pp. 109-114.
    [64] F. Petrini and M. Vanneschi, "k-ary n-trees: High Performance Networks for Massively Parallel Architectures," in Proceedings of the 11th International Symposium on Parallel Processing, 1997, pp. 87-93.
    [65] V. Puente, J. A. Gregorio, R. Beivide, F. Vallejo, and A. Ibanez, "A New Routing Mechanism for Networks with Irregular Topology," in Proceedings of ACM/IEEE Conference on Supercomputing, 2001, pp. 51-51.
    [66] J. C. Sancho, A. Robles, and J. Duato, "Effective Strategy to Compute Forwarding Tables for InfiniBand Networks," in Proceedings of the International Conference on Parallel Processing, 2001, pp. 48-60.
    [67] J. C. Sancho, A. Robles, and J. Duato, "An Effective Methodology to Improve the Performance of the Up*/Down* Routing Algorithm," IEEE Transactions on Parallel and Distributed Systems, vol. 15, pp. 740-754, 2004.
    [68] J. C. Sancho, A. Robles, J. Flich, P. Lopez, and J. Duato, "Effective Methodology for Deadlock-Free Minimal Routing in InfiniBand Networks," in Proceedings of the International Conference on Parallel Processing, 2002, pp. 48-57.
    [69] M. Sangman, Y. Chansu, Y. Hee Yong, L. Ben, and H. Dongsoo, "Mapping Strategies for Switch-Based Cluster Systems of Irregular Topology," in Proceedings of the Eighth International Conference on Parallel and Distributed Systems, 2001, pp. 733-740.
    [70] M. D. Schroeder, A. D. Birrell, M. Burrows, H. Murray, R. M. Needham, T. L. Rodeheffer, E. H. Satterthwaite, and C. P. Thacker, "Autonet: A High-Speed, Self-Configuring Local Area Network Using Point-to-Point Links," IEEE Journal on Selected Areas in Communications, vol. 9, pp. 1318-1335, 1991.
    [71] F. Silla and J. Duato, "High-Performance Routing in Networks of Workstations with Irregular Topology," IEEE Transactions on Parallel and Distributed Systems, vol. 11, pp. 699-719, 2000.
    [72] F. Silla and J. Duato, "Improving the Efficiency of Adaptive Routing in Networks with Irregular Topology," in Proceedings of the Fourth International Conference on High-Performance Computing, 1997, pp. 330-335.
    [73] R. Sivaram, D. K. Panda, and C. B. Stunkel, "Efficient Broadcast and Multicast on Multistage Interconnnection Networks using Multiport Encoding," in Proceedings of the 8th IEEE Symposium on Parallel and Distributed Processing (SPDP), 1996, pp. 36-45.
    [74] T. Skeie, O. Lysne, J. Flich, P. Lopez, A. Robles, and J. Duato, "LASH-TOR:
    92
    A Generic Transition-Oriented Routing Algorithm," in Proceedings of the Tenth International Conference on Parallel and Distributed Systems (ICPADS), 2004, pp. 595-604.
    [75] H. Sullivan and T. R. Bashhow, "A Large Scale, Homogeneous, Fully, Distributed Parallel Machine," in Proceedings of the International Symposium on Computer Architecture, 1977.
    [76] I. Theiss and O. Lysne, "FRoots: A Fault Tolerant and Topology-Flexible Routing Technique," IEEE Transactions on Parallel and Distributed Systems, vol. 17, pp. 1136-1150, 2006.
    [77] J. L. Traff, "Implementing the MPI Process Topology Mechanism," in Proceedings of ACM/IEEE Conference on Supercomputing, 2002, pp. 28-28.
    [78] M. Valerio, L. E. Moser, and P. M. Melliar-Smith, "Recursively Scalable Fat-Trees as Interconnection Networks," in Proceedings of the IEEE 13th International Phoenix Conference on Computers and Communications, 1994, pp. 40-46.
    [79] A. Vishnu, M. Krishnan, and D. K. Panda, "An Efficient Hardware-Software Approach to Network Fault Tolerance with InfiniBand," in Proceedings of IEEE International Conference on Cluster Computing and Workshops, 2009, pp. 1-9.
    [80] H. Wen, S. Sbaraglia, S. Seelam, I. Chung, G. Cong, and D. Klepacki, "A Productivity Centered Tools Framework for Application Performance Tuning," in Proceedings of the Fourth International Conference on the Quantitative Evaluation of Systems (QEST), 2007, pp. 273-274.
    [81] Z. Wu and R. Leahy, "An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 15, pp. 1101-1113, 1993.
    [82] D. Xinming, Z. Dakun, and S. Xuemei, "Fault-Tolerant Routing Schemes for Wormhole Mesh," in Proceedings of IEEE International Symposium on Parallel and Distributed Processing with Applications, 2009, pp. 298-301.
    [83] H. Xu, P. K. McKinley, and L. M. Ni, "Efficient Implementation of Barrier Synchronization in Wormhole-Routed Hypercube Multicomputers," in Proceedings of the 12th International Conference on Distributed Computing Systems, 1992, pp. 118-125.
    [84] J. Zhou, X.-Y. Lin, and Y.-C. Chung, "Hardware Supported Multicast in Fat-Tree-Based InfiniBand Networks," The Journal of Supercomputing, vol. 40, pp. 333-352, 2007.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE