簡易檢索 / 詳目顯示

研究生: 黃紹筑
Huang, Shao-Chu
論文名稱: 多金屬氧酸鹽作為電極材料在鋰離子儲能元件之應用
Application of Polyoxometalates as Electrode Materials in Lithium-ion Energy Storage Devices
指導教授: 陳翰儀
Chen, Han-Yi
陳燦耀
Chen, Tsan-Yao
口試委員: 胡啟章
Hu, Chi-Chang
張仍奎
Chang, Jeng-Kuei
胡芝瑋
Hu, Chih-Wei
廖彥發
Liao, Yen-Fa
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 131
中文關鍵詞: 鋰離子電池鋰離子電容器多金屬氧酸鹽負極
外文關鍵詞: Lithium-ion-batteries, Lithium-ion-capacitors, Polyoxometalates, Anode
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子電池因具有能量密度高、體積小等優勢,被廣泛應用於生活當中,因此近年來鋰離子電池相關之研究備受關注,成為熱門的研究主題。多金屬氧酸鹽(Polyoxometalates, POMs)由於具有多重氧化還原反應的性質,可如同海綿般儲存許多鋰離子,因此成為相當具備潛力之高電容量鋰離子儲能電極材料。在此研究背景下,本研究旨在開發新型多金屬氧酸鹽材料,作為鋰離子儲能電極,並運用臨場與非臨場量測技術研究其儲能機制。首先,本研究論文提出一種以釩離子為基底之多金屬氧酸鹽,Na7H2[PV14O42](NPV),作為鋰離子儲能元件之負極材料。研究結果顯示NPV在電流密度為100 mA g−1時具有687 mA h g−1之高可逆電容量,且經150次充放電循環後可保持80%之初始電容量。進一步使用同步輻射X光針對其儲能機制進行分析後,由同步輻射X光吸收近邊緣結構(X-ray absorption near edge structure, XANES)結果顯示釩離子的平均價態從V4+變為V1.87+,代表每NPV分子能夠轉移至少30個電子,使得NPV能夠提供高的電容量。此外,同步輻射X光繞射(XRD)也證明在充放電循環過程中,NPV電極之晶體結構轉變為非晶,且在之後的循環過程中能夠保持其非晶狀態,提供良好的結構穩定性。本研究結果顯示鋰離子在充放電過程中持續嵌入非晶的NPV結構間,並與作為電子/離子海綿的[PV14O42]9−分子反應,使NPV具備優異的電容量與穩定性。
    本研究進一步開發開普勒型(Keplerate-type) POM奈米顆粒:[{Mo6O19}⊂{Mo72Fe30O254(CH3COO)12(H2O)96}]‧150H2O({Mo72Fe30})作為高能量密度之鋰離子電池負極材料,並利用同步輻射X光進行臨場及非臨場測量,以探討{Mo72Fe30}之電荷儲存機制。臨場X光吸收近邊結構顯示單位{Mo72Fe30}分子可儲存高達377個電子,因此{Mo72Fe30}負極在電流密度為100 mA g−1時具有高達約1250 mA h g−1之電容量,且在100次循環後仍可保有92%之初始電容量。此外,{Mo72Fe30}更表現出優異的倍率性能,在2000 mA g−1的高電流密度下時,仍然具有868 mA h g−1之優異電容量。其高倍率性能可歸因於{Mo72Fe30}之高鋰離子擴散係數(10−10 cm2 s−1),使其能夠進行高效的表面控制電容反應和擴散控制嵌入反應。此外,本研究進一步使用{Mo72Fe30}作為負極,LiFePO4作為正極組裝成全電池,以研究{Mo72Fe30}負極材料在鋰離子電池當中的實際應用。研究結果顯示{Mo72Fe30}// LiFePO4全電池之能量密度可達258 Wh kg−1,證實{Mo72Fe30}為相當具有潛力之高能量密度鋰離子電池負極材料。


    Lithium-ion batteries (LIBs), renowned for their high energy densities, have been the focus of extensive research in recent years. Polyoxometalates (POMs), known for their multiple redox reactions, have emerged as effective electron/ion sponges for lithium-ion storage applications, showing great promise as high-capacity anode materials. In this research, we report a vanadium-based POM, Na7H2[PV14O42] (NPV), as an anode material for LIBs. NPV demonstrates an impressively reversible capacity of up to 687 mA h g−1 at a current density of 100 mA g−1 and ~80% capacity retention after 150 cycles. The change of vanadium valency states from 4+ to 1.87+ is revealed by in operando synchrotron X-ray absorption near edge structure (XANES) analyses, suggesting the ability to transfer at least 30 electrons for each NVP molecule, contributing to the high capacity. Additionally, in operando synchrotron X-ray diffraction (XRD) patterns varifies that the crystal structure of NPV becomes and keeps an amorphous state during cycling, resulting in the good structural stability. This study proposes a charge storage mechanism where lithium ions continuously insert into the amorphous NPV and react with [PV14O42]9− polyanions, which act as electron/ion sponges capable of storing at least 30 electrons.
    We also introduce a Keplerate-type POM [{Mo6O19}⊂{Mo72Fe30O254(CH3COO)12(H2O)96}]‧150H2O ({Mo72Fe30}) nanoparticles as a high-energy anode material for LIB or the first time. Using synchrotron radiation X-rays, we performed in operando (in situ) and ex situ measurements to explore the charge storage mechanisms of {Mo72Fe30}. In operando XANES discovers the ability of one {Mo72Fe30} molecule to store 377 electrons. Therefore, {Mo72Fe30} anode shows an outstanding capacity of up to 1250 mA h g−1 at a current density of 100 mA g−1, with a cycling retention of 92% after 100 cycles. A palmary rate capability of 868 mA h g−1 at 2000 mA g−1 is also demonstrated for {Mo72Fe30} anode, which is attributed to the high Li-ion diffusion coefficient up to 10−10 cm2 s−1, allowing for efficient surface-capacitive reactions and diffusion processes. Furthermore, a full-cell using {Mo72Fe30} as the anode is assembled with LiFePO4 as the cathode, delivering a high energy density of 258 Wh kg−1. This study demonstrates the potential of {Mo72Fe30} as a prospective anode material for high-energy LIB applications.

    摘要 i Abstract iii Acknowledgement v Table of Contents vii List of Figures xii List of Tables xix Chapter 1 Introduction 1 1.1 Background 1 1.2 Motivation and Objective 2 1.3 Thesis Organization 3 Chapter 2 Literature Review 4 2.1 Principle of Lithium-ion Batteries 4 2.2 Reaction Mechanisms of Active Materials 7 2.2.1 Intercalation/ Insertion 7 2.2.2 Alloying 8 2.2.3 Conversion 8 2.3 Anode Materials for Lithium-ion Batteries 9 2.3.1 Carbon Materials 10 2.3.2 Li4Ti5O12 11 2.3.3 Silicon-based Materials 12 2.3.4 Transition Metal Oxides 13 2.4 Principle of Lithium-ion Capacitors 14 2.5 Polyoxometalates (POMs) as Anode Materials 16 Chapter 3 Experimental Methodology 22 3.1 Experimental Frameworks 22 3.2 Table of Experimental Chemicals 24 3.3 Material Syntheses 26 3.3.1 Na7H2[PV14O42] Synthesis 26 3.3.2 [{Mo6O19}⊂{Mo72Fe30O254 (CH3COO)12(H2O)96}] ‧150H2O ({Mo72Fe30}) Synthesis 26 3.4 Cell Assembling 27 3.4.1 Electrode Preparation 27 3.4.2 Electrolyte Preparation 29 3.4.3 Half Cell Assembling 30 3.4.4 Full Cell Assembling 31 3.4.5 In operando (In situ) Coin Cell Assembling 31 3.4.6 In operando (In situ) Pouch Cell Assembling 32 3.5 Material Characterization 33 3.5.1 X-ray Diffraction (XRD, Bruker D2 Phaser) 33 3.5.2 Field Emission Scanning Electron Microscopy (FESEM, Hitachi SU8010) 34 3.5.3 Fourier Transform Infrared Spectroscopy (FTIR, Nicolet Avatar 370) 34 3.5.4 Raman Spectroscopy (Labram HR800) 35 3.5.5 Ultraviolet–Visible Spectroscopy (UV–Vis, Varian Cary 5000) 35 3.5.6 Thermogravimetric Analysis (TGA, STA 449 F1 Jupiter) 35 3.5.7 Brunauer-Emmett-Teller (BET, Micrometric ASAP 2020) Analysis 36 3.5.8 High-resolution Transmission Electron Microscopy (HR-TEM, JEM-ARM200FTH) 36 3.5.9 Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) 37 3.5.10 CHNS Elemental Analysis (elementar vario EL cube) 37 3.6 Electrochemical Analyses 38 3.6.1 Cyclic Voltammetry (CV) 38 3.6.2 Galvanostatic Charge-Discharge (GCD) 39 3.6.3 Electrochemical Impedance Spectroscopy (EIS) 40 3.6.4 Potentiostatic Intermittent Titration Technique (PITT) 41 3.7 In operando (In situ)/ Ex situ Measuring Techniques 42 3.7.1 Ex situ X-ray Photoelectron Spectroscopy (XPS, ESCA ULVAC-PHI, PHI 5000 Versaprobe II) 42 3.7.2 Ex situ Transmission Electron Microscopy (TEM) 43 3.7.3 In operando X-ray Diffraction (XRD) 43 3.7.4 X-ray Absorption Spectroscopy (XAS) 44 Chapter 4 Results and Discussion 50 4.1 Na7H2[PV14O42] (NPV) 50 4.1.1 Material Characterization 50 1.1.1 Electrochemical Performance 51 4.1.2 Electrons/ Li-ions Storage Mechanism 56 4.1.3 Kinetic Analyses 62 4.1.4 Summary 66 4.2 {Mo72Fe30} 68 4.2.1 Material Characterization 68 4.2.2 Electrochemical Performance 73 4.2.3 Electrons/ Li-ions Storage Mechanism 77 4.2.4 Kinetic Analyses 90 4.2.5 Summary 94 Chapter 5 Conclusion 99 5.1 Conclusion for Na7H2[PV14O42] Research 99 5.2 Conclusion for {Mo72Fe30} Research 99 Chapter 6 Future Prospects 101 Publication/ Patent/ Award/ Conference 102 Reference 107

    [1] A. Hepbasli, A key review on exergetic analysis and assessment of renewable energy resources for a sustainable future. Renewable and Sustainable Energy Reviews, 2008. 12(3): p. 593-661.
    [2] P. Simon, Y. Gogotsi, and B. Dunn, Where Do Batteries End and Supercapacitors Begin? Science, 2014. 343(6176): p. 1210.
    [3] M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P.L. Taberna, C.P. Grey, B. Dunn, and P. Simon, Efficient storage mechanisms for building better supercapacitors. Nature Energy, 2016. 1(6): p. 16070.
    [4] A.C. Forse, C. Merlet, J.M. Griffin, and C.P. Grey, New Perspectives on the Charging Mechanisms of Supercapacitors. Journal of the American Chemical Society, 2016. 138(18): p. 5731-5744.
    [5] J.B. Goodenough, Electrochemical energy storage in a sustainable modern society. Energy & Environmental Science, 2014. 7(1): p. 14-18.
    [6] R.C. Massé, C. Liu, Y. Li, L. Mai, and G. Cao, Energy storage through intercalation reactions: electrodes for rechargeable batteries. National Science Review, 2017. 4(1): p. 26-53.
    [7] J.M. Tarascon and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414: p. 359.
    [8] P. Sehrawat, C. Julien, and S.S. Islam, Carbon nanotubes in Li-ion batteries: A review. Materials Science and Engineering: B, 2016. 213: p. 12-40.
    [9] B. Scrosati, J. Hassoun, and Y.-K. Sun, Lithium-ion batteries. A look into the future. Energy & Environmental Science, 2011. 4(9): p. 3287-3295.
    [10] N. Nitta, F. Wu, J.T. Lee, and G. Yushin, Li-ion battery materials: present and future. Materials Today, 2015. 18(5): p. 252-264.
    [11] X. Zhang, J.-C. Daigle, and K. Zaghib, Comprehensive Review of Polymer Architecture for All-Solid-State Lithium Rechargeable Batteries. Materials, 2020. 13(11): p. 2488.
    [12] J. Long, J. Gu, Z. Yang, J. Mao, J. Hao, Z. Chen, and Z. Guo, Highly porous, low band-gap NixMn3−xO4 (0.55 ≤ x ≤ 1.2) spinel nanoparticles with in situ coated carbon as advanced cathode materials for zinc-ion batteries. Journal of Materials Chemistry A, 2019. 7(30): p. 17854-17866.
    [13] S.R. Sivakkumar, A.S. Milev, and A.G. Pandolfo, Effect of ball-milling on the rate and cycle-life performance of graphite as negative electrodes in lithium-ion capacitors. Electrochimica Acta, 2011. 56(27): p. 9700-9706.
    [14] R. Yi, S. Chen, J. Song, M.L. Gordin, A. Manivannan, and D. Wang, High-Performance Hybrid Supercapacitor Enabled by a High-Rate Si-based Anode. Advanced Functional Materials, 2014. 24(47): p. 7433-7439.
    [15] F. Sun, J. Gao, Y. Zhu, X. Pi, L. Wang, X. Liu, and Y. Qin, A high performance lithium ion capacitor achieved by the integration of a Sn-C anode and a biomass-derived microporous activated carbon cathode. Scientific reports, 2017. 7: p. 40990-40990.
    [16] F. Zhang, T. Zhang, X. Yang, L. Zhang, K. Leng, Y. Huang, and Y. Chen, A high-performance supercapacitor-battery hybrid energy storage device based on graphene-enhanced electrode materials with ultrahigh energy density. Energy & Environmental Science, 2013. 6(5): p. 1623-1632.
    [17] M. Yang, Y. Zhong, J. Ren, X. Zhou, J. Wei, and Z. Zhou, Fabrication of High-Power Li-Ion Hybrid Supercapacitors by Enhancing the Exterior Surface Charge Storage. Advanced Energy Materials, 2015. 5(17): p. 1500550.
    [18] P. Han, W. Ma, S. Pang, Q. Kong, J. Yao, C. Bi, and G. Cui, Graphene decorated with molybdenum dioxide nanoparticles for use in high energy lithium ion capacitors with an organic electrolyte. Journal of Materials Chemistry A, 2013. 1(19): p. 5949-5954.
    [19] D.-Y. Du, L.-K. Yan, Z.-M. Su, S.-L. Li, Y.-Q. Lan, and E.-B. Wang, Chiral polyoxometalate-based materials: From design syntheses to functional applications. Coordination Chemistry Reviews, 2013. 257(3): p. 702-717.
    [20] D.E. Katsoulis, A Survey of Applications of Polyoxometalates. Chemical Reviews, 1998. 98(1): p. 30.
    [21] N. Kawasaki, H. Wang, R. Nakanishi, S. Hamanaka, R. Kitaura, H. Shinohara, T. Yokoyama, H. Yoshikawa, and K. Awaga, Nanohybridization of Polyoxometalate Clusters and Single-Wall Carbon Nanotubes: Applications in Molecular Cluster Batteries. Angewandte Chemie International Edition, 2011. 50(15): p. 3471-3474.
    [22] N. Sonoyama, Y. Suganuma, T. Kume, and Z. Quan, Lithium intercalation reaction into the Keggin type polyoxomolybdates. Journal of Power Sources, 2011. 196(16): p. 6822-6827.
    [23] S. Uematsu, Z. Quan, Y. Suganuma, and N. Sonoyama, Reversible lithium charge–discharge property of bi-capped Keggin-type polyoxovanadates. Journal of Power Sources, 2012. 217(Supplement C): p. 13-20.
    [24] D. Ma, L. Liang, W. Chen, H. Liu, and Y.-F. Song, Covalently Tethered Polyoxometalate–Pyrene Hybrids for Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes as High-Performance Anode Material. Advanced Functional Materials, 2013. 23(48): p. 6100-6105.
    [25] W. Chen, L. Huang, J. Hu, T. Li, F. Jia, and Y.-F. Song, Connecting carbon nanotubes to polyoxometalate clusters for engineering high-performance anode materials. Physical Chemistry Chemical Physics, 2014. 16(36): p. 19668-19673.
    [26] R.N. Nasim Khan, N. Mahmood, C. Lv, G. Sima, J. Zhang, J. Hao, Y. Hou, and Y. Wei, Pristine organo-imido polyoxometalates as an anode for lithium ion batteries. RSC Advances, 2014. 4(15): p. 7374-7379.
    [27] L. Huang, J. Hu, Y. Ji, C. Streb, and Y.-F. Song, Pyrene-Anderson-Modified CNTs as Anode Materials for Lithium-Ion Batteries. Chemistry – A European Journal, 2015. 21(51): p. 18799-18804.
    [28] Y. Ji, L. Huang, J. Hu, C. Streb, and Y.-F. Song, Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems. Energy & Environmental Science, 2015. 8(3): p. 776-789.
    [29] Y. Yue, Y. Li, Z. Bi, G.M. Veith, C.A. Bridges, B. Guo, J. Chen, D.R. Mullins, S.P. Surwade, S.M. Mahurin, H. Liu, M.P. Paranthaman, and S. Dai, A POM-organic framework anode for Li-ion battery. Journal of Materials Chemistry A, 2015. 3(45): p. 22989-22995.
    [30] J. Xie, Y. Zhang, Y. Han, and C. Li, High-Capacity Molecular Scale Conversion Anode Enabled by Hybridizing Cluster-Type Framework of High Loading with Amino-Functionalized Graphene. ACS Nano, 2016. 10(5): p. 5304-5313.
    [31] Q. Huang, T. Wei, M. Zhang, L.-Z. Dong, A.M. Zhang, S.-L. Li, W.-J. Liu, J. Liu, and Y.-Q. Lan, A highly stable polyoxometalate-based metal-organic framework with [small pi]-[small pi] stacking for enhancing lithium ion battery performance. Journal of Materials Chemistry A, 2017. 5(18): p. 8477-8483.
    [32] J. Hu, H. Diao, W. Luo, and Y.-F. Song, Dawson-Type Polyoxomolybdate Anions (P2Mo18O626−) Captured by Ionic Liquid on Graphene Oxide as High-Capacity Anode Material for Lithium-Ion Batteries. Chemistry – A European Journal, 2017. 23(36): p. 8729-8735.
    [33] Y. Zhu, T. Gao, X. Fan, F. Han, and C. Wang, Electrochemical Techniques for Intercalation Electrode Materials in Rechargeable Batteries. Accounts of Chemical Research, 2017. 50(4): p. 1022-1031.
    [34] M. Li, L. Cong, J. Zhao, T. Zheng, R. Tian, J. Sha, Z. Su, and X. Wang, Self-organization towards complex multi-fold meso-helices in the structures of Wells-Dawson polyoxometalate-based hybrid materials for lithium-ion batteries. Journal of Materials Chemistry A, 2017. 5(7): p. 3371-3376.
    [35] X.-Y. Yang, T. Wei, J.-S. Li, N. Sheng, P.-P. Zhu, J.-Q. Sha, T. Wang, and Y.-Q. Lan, Polyoxometalate-Incorporated Metallapillararene/Metallacalixarene Metal-Organic Frameworks as Anode Materials for Lithium Ion Batteries. Inorganic Chemistry, 2017. 56(14): p. 8311-8318.
    [36] T. Wei, M. Zhang, P. Wu, Y.-J. Tang, S.-L. Li, F.-C. Shen, X.-L. Wang, X.-P. Zhou, and Y.-Q. Lan, POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage. Nano Energy, 2017. 34: p. 205-214.
    [37] J. Hu, F. Jia, and Y.-F. Song, Engineering high-performance polyoxometalate/PANI/MWNTs nanocomposite anode materials for lithium ion batteries. Chemical Engineering Journal, 2017. 326(Supplement C): p. 273-280.
    [38] F.-C. Shen, Y.-R. Wang, S.-L. Li, J. Liu, L.-Z. Dong, T. Wei, Y.-C. Cui, X.L. Wu, Y. Xu, and Y.-Q. Lan, Self-assembly of polyoxometalate/reduced graphene oxide composites induced by ionic liquids as a high-rate cathode for batteries: "killing two birds with one stone". Journal of Materials Chemistry A, 2018. 6(4): p. 1743-1750.
    [39] J.B. Goodenough and K.-S. Park, The Li-Ion Rechargeable Battery: A Perspective. Journal of the American Chemical Society, 2013. 135(4): p. 1167-1176.
    [40] K. Roy, A. Banerjee, and S. Ogale, Search for New Anode Materials for High Performance Li-Ion Batteries. ACS Applied Materials & Interfaces, 2022. 14(18): p. 20326-20348.
    [41] J.-L. Brédas, J.M. Buriak, F. Caruso, K.-S. Choi, B.A. Korgel, M.R. Palacín, K. Persson, E. Reichmanis, F. Schüth, R. Seshadri, and M.D. Ward, An Electrifying Choice for the 2019 Chemistry Nobel Prize: Goodenough, Whittingham, and Yoshino. Chemistry of Materials, 2019. 31(21): p. 8577-8581.
    [42] J. Xie and Y.-C. Lu, A retrospective on lithium-ion batteries. Nature Communications, 2020. 11(1): p. 2499.
    [43] P.V. Kamat, Lithium-Ion Batteries and Beyond: Celebrating the 2019 Nobel Prize in Chemistry – A Virtual Issue. ACS Energy Letters, 2019. 4(11): p. 2757-2759.
    [44] C. Kajari, M.K. Sridhar, S. Akhilesh Kumar, and S. Kisor Kumar, Application of Ionic Liquids in Rechargeable Li-Ion Batteries: A Comprehensive Guide to Design, Synthesis and Computational Aspects, in Industrial Applications of Ionic Liquids, M. Fabrice, Editor. 2022, IntechOpen: Rijeka. p. Ch. 3.
    [45] M.R. Palacin, Recent advances in rechargeable battery materials: a chemist's perspective. Chemical Society Reviews, 2009. 38(9): p. 2565-2575.
    [46] J.B. Goodenough and Y. Kim, Challenges for Rechargeable Li Batteries†. Chemistry of Materials, 2010. 22(3): p. 587-603.
    [47] J.B. Goodenough and K.S. Park, The Li-ion Rechargeable Battery: a Perspective. J Am Chem Soc, 2013. 135(4): p. 1167-76.
    [48] D. Billaud, E. Mcrae, and A. Hérold, Synthesis and electrical resistivity of lithium-pyrographite intercalation compounds (stages I, II and III). Materials Research Bulletin, 1979. 14(7): p. 857-864.
    [49] Y. Qi, H. Guo, L.G. Hector, and A. Timmons, Threefold Increase in the Young’s Modulus of Graphite Negative Electrode during Lithium Intercalation. Journal of The Electrochemical Society, 2010. 157(5): p. A558-A566.
    [50] J. Wang, J.-L. Liu, Y.-G. Wang, C.-X. Wang, and Y.-Y. Xia, Pitch modified hard carbons as negative materials for lithium-ion batteries. Electrochimica Acta, 2012. 74: p. 1-7.
    [51] H.B. Wang, Q. Yu, and J. Qu, Synthesis of phosphorus-doped soft carbon as anode materials for lithium and sodium ion batteries. Russian Journal of Physical Chemistry A, 2017. 91(6): p. 1152-1155.
    [52] S. Scharner, W. Weppner, and P. Schmid‐Beurmann, Evidence of Two‐Phase Formation upon Lithium Insertion into the Li1.33Ti1.67 O 4 Spinel. Journal of The Electrochemical Society, 1999. 146(3): p. 857-861.
    [53] J. Guo, W. Zuo, Y. Cai, S. Chen, S. Zhang, and J. Liu, A novel Li4Ti5O12-based high-performance lithium-ion electrode at elevated temperature. Journal of Materials Chemistry A, 2015. 3(9): p. 4938-4944.
    [54] M. Ge, J. Rong, X. Fang, A. Zhang, Y. Lu, and C. Zhou, Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Research, 2013. 6(3): p. 174-181.
    [55] N. Liu, H. Wu, M.T. Mcdowell, Y. Yao, C. Wang, and Y. Cui, A yolk-shell design for stabilized and scalable li-ion battery alloy anodes. Nano Lett, 2012. 12(6): p. 3315-21.
    [56] K. Cao, L. Jiao, H. Liu, Y. Liu, Y. Wang, Z. Guo, and H. Yuan, 3D Hierarchical Porous α-Fe2O3 Nanosheets for High-Performance Lithium-Ion Batteries. Advanced Energy Materials, 2015. 5(4): p. 1401421.
    [57] S.H. Lee, S.H. Yu, J.E. Lee, A. Jin, D.J. Lee, N. Lee, H. Jo, K. Shin, T.Y. Ahn, Y.W. Kim, H. Choe, Y.E. Sung, and T. Hyeon, Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement. Nano Lett, 2013. 13(9): p. 4249-56.
    [58] D. Wang, Y. Yu, H. He, J. Wang, W. Zhou, and H.D. Abruña, Template-Free Synthesis of Hollow-Structured Co3O4 Nanoparticles as High-Performance Anodes for Lithium-Ion Batteries. ACS Nano, 2015. 9(2): p. 1775-1781.
    [59] A. Ostroushko, I. Gagarin, M. Tonkushina, K. Grzhegorzhevskii, and O. Russkikh, Association of Spherical Porous Nanocluster Keplerate-Type Polyoxometalate Mo72Fe30 with Biologically Active Substances. Journal of Cluster Science, 2017. 29.
    [60] Y. Ding, Y. Yang, and H. Shao, High capacity ZnFe2O4 anode material for lithium ion batteries. Electrochimica Acta, 2011. 56(25): p. 9433-9438.
    [61] S. Park, K. Lian, and Y. Gogotsi, Pseudocapacitive Behavior of Carbon Nanoparticles Modified by Phosphomolybdic Acid. Journal of the Electrochemical Society, 2009. 156(11): p. A921-A926.
    [62] G. Yu, X. Xie, L. Pan, Z. Bao, and Y. Cui, Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2013. 2(2): p. 213-234.
    [63] W. Zuo, R. Li, C. Zhou, Y. Li, J. Xia, and J. Liu, Battery-Supercapacitor Hybrid Devices: Recent Progress and Future Prospects. Advanced Science, 2017. 4(7): p. 1600539.
    [64] V. Aravindan, J. Gnanaraj, Y.-S. Lee, and S. Madhavi, Insertion-Type Electrodes for Nonaqueous Li-Ion Capacitors. Chemical Reviews, 2014. 114(23): p. 11619-11635.
    [65] Q. Wang, A. Sarkar, Z. Li, Y. Lu, L. Velasco, S.S. Bhattacharya, T. Brezesinski, H. Hahn, and B. Breitung, High entropy oxides as anode material for Li-ion battery applications: A practical approach. Electrochemistry Communications, 2019. 100: p. 121-125.
    [66] N.I. Gumerova and A. Rompel, Synthesis, structures and applications of electron-rich polyoxometalates. Nature Reviews Chemistry, 2018. 2(2): p. 0112.
    [67] R. Franke-Lang, T. Arlt, I. Manke, and J. Kowal, X-ray tomography as a powerful method for zinc-air battery research. Journal of Power Sources, 2017. 370: p. 45-51.
    [68] T. Wei, M. Zhang, P. Wu, Y.-J. Tang, S.-L. Li, F.-C. Shen, X.-L. Wang, X.-P. Zhou, and Y.-Q. Lan, POM-based metal-organic framework/reduced graphene oxide nanocomposites with hybrid behavior of battery-supercapacitor for superior lithium storage. Nano Energy, 2017. 34(Supplement C): p. 205-214.
    [69] S.-C. Huang, C.-C. Lin, C.-W. Hu, Y.-F. Liao, T.-Y. Chen, and H.-Y. Chen, Vanadium-based polyoxometalate as electron/ion sponge for lithium-ion storage. Journal of Power Sources, 2019. 435: p. 226702.
    [70] Y. Nishimoto, D. Yokogawa, H. Yoshikawa, K. Awaga, and S. Irle, Super-Reduced Polyoxometalates: Excellent Molecular Cluster Battery Components and Semipermeable Molecular Capacitors. Journal of the American Chemical Society, 2014. 136(25): p. 9042-9052.
    [71] X. Jia, J. Wang, H. Hu, and Y.-F. Song, Three-Dimensional Carbon Framework Anchored Polyoxometalate as a High-Performance Anode for Lithium-Ion Batteries. Chemistry – A European Journal, 2020. 26(23): p. 5257-5263.
    [72] W.-J. Liu, G. Yu, M. Zhang, R.-H. Li, L.-Z. Dong, H.-S. Zhao, Y.-J. Chen, Z.-F. Xin, S.-L. Li, and Y.-Q. Lan, Investigation of the Enhanced Lithium Battery Storage in a Polyoxometalate Model: From Solid Spheres to Hollow Balls. Small Methods, 2018. 2(11): p. 1800154.
    [73] H. Ying and W.Q. Han, Metallic Sn‐Based Anode Materials: Application in High‐Performance Lithium‐Ion and Sodium‐Ion Batteries. Advanced Science, 2017. 4(11): p. 1700298.
    [74] B. Iqbal, X. Jia, H. Hu, L. He, W. Chen, and Y.-F. Song, Fabrication of redox-active polyoxometalate-based ionic crystals onto single-walled carbon nanotubes as high-performance anode materials for lithium-ion batteries. Inorganic Chemistry Frontiers, 2020. 7(6): p. 1420-1427.
    [75] P. Zhu, X. Yang, X. Li, N. Sheng, H. Zhang, G. Zhang, and J. Sha, Insights into the lithium diffusion process in a defect-containing porous crystalline POM@MOF anode material. Dalton Transactions, 2020. 49(1): p. 79-88.
    [76] L. Huang, J. Hu, Y. Ji, C. Streb, and Y.-F. Song, Pyrene-Anderson-Modified CNTs as Anode Materials for Lithium-Ion Batteries. Vol. 21. 2015.
    [77] Y. Ji, J. Hu, J. Biskupek, U. Kaiser, Y.-F. Song, and C. Streb, Polyoxometalate-Based Bottom-Up Fabrication of Graphene Quantum Dot/Manganese Vanadate Composites as Lithium Ion Battery Anodes. Chemistry – A European Journal, 2017. 23(65): p. 16637-16643.
    [78] J. Hu, F. Jia, and Y.-F. Song, Engineering high-performance polyoxometalate/PANI/MWNTs nanocomposite anode materials for lithium ion batteries. Chemical Engineering Journal, 2017. 326: p. 273-280.
    [79] Y.-H. Ding, J. Peng, S.-U. Khan, and Y. Yuan, A New Polyoxometalate (POM)-Based Composite: Fabrication through POM-Assisted Polymerization of Dopamine and Properties as Anode Materials for High-Performance Lithium-Ion Batteries. Chemistry – A European Journal, 2017. 23(43): p. 10338-10343.
    [80] J.-Q. Sha, X.-Y. Yang, Y. Chen, P.-P. Zhu, Y.-F. Song, and J. Jiang, Fabrication and Electrochemical Performance of Polyoxometalate-Based Three-Dimensional Metal Organic Frameworks Containing Carbene Nanocages. ACS Applied Materials & Interfaces, 2018. 10(19): p. 16660-16665.
    [81] M.-T. Li, X.-Y. Yang, J.-S. Li, N. Sheng, G.-D. Liu, J.-Q. Sha, and Y.-Q. Lan, Assembly of Multifold Helical Polyoxometalate-Based Metal–Organic Frameworks as Anode Materials in Lithium-Ion Batteries. Inorganic Chemistry, 2018. 57(7): p. 3865-3872.
    [82] X. Li, K.-F. Zhou, Z.-B. Tong, X.-Y. Yang, C.-Y. Chen, X.-H. Shang, and J.-Q. Sha, Heightened Integration of POM-based Metal–Organic Frameworks with Functionalized Single-Walled Carbon Nanotubes for Superior Energy Storage. Chemistry – An Asian Journal, 2019. 14(19): p. 3424-3430.
    [83] C.-C. Lin, C.-T. Hsu, W. Liu, S.-C. Huang, M.-H. Lin, U. Kortz, A.S. Mougharbel, T.-Y. Chen, C.-W. Hu, J.-F. Lee, C.-C. Wang, Y.-F. Liao, L.-J. Li, L. Li, S. Peng, U. Stimming, and H.-Y. Chen, In Operando X-ray Studies of High-Performance Lithium-Ion Storage in Keplerate-Type Polyoxometalate Anodes. ACS Applied Materials & Interfaces, 2020. 12(36): p. 40296-40309.
    [84] T.-Y. Chen, H.V. Thang, T.-Y. Yi, S.-C. Huang, C.-C. Lin, Y.-M. Chang, P.-L. Chen, M.-H. Lin, J.-F. Lee, H.-Y.T. Chen, C.-C. Hu, and H.-Y. Chen, Operando X-ray Studies of Ni-Containing Heteropolyvanadate Electrode for High-Energy Lithium-Ion Storage Applications. ACS Applied Materials & Interfaces, 2022. 14(46): p. 52035-52045.
    [85] C.S. Schnohr and M. Ridgway., X-Ray Absorption Spectroscopy of Semiconductors, in Springer Series in Optical Sciences. 2015, Springer-Verlag Berlin Heidelberg.
    [86] R. Kato, A. Kobayashi, and Y. Sasaki, The heteropolyvanadate of phosphorus. Crystallographic and NMR studies. Inorganic Chemistry, 1982. 21(1): p. 240-246.
    [87] K. Nomiya, K. Kato, and M. Miwa, Preparation and spectrochemical properties of soluble vanadophosphate polyanions with bicapped-Keggin structure. Polyhedron, 1986. 5(3): p. 811-813.
    [88] C.-C. Lin, W.-H. Lin, S.-C. Huang, C.-W. Hu, T.-Y. Chen, C.-T. Hsu, H. Yang, A. Haider, Z. Lin, U. Kortz, U. Stimming, and H.-Y. Chen, Mechanism of Sodium Ion Storage in Na7[H2PV14O42] Anode for Sodium-Ion Batteries. Advanced Materials Interfaces, 2018. 5(15): p. 1800491.
    [89] L. Jiang, Y. Qu, Z. Ren, P. Yu, D. Zhao, W. Zhou, L. Wang, and H. Fu, In Situ Carbon-Coated Yolk–Shell V2O3 Microspheres for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2015. 7(3): p. 1595-1601.
    [90] Y. Yang, Y. Lu, W. Wang, C. Feng, and S. Yang, Synthesis and Electrochemical Properties of Nano-VO2 (B). Vol. 16. 2016. 2534-2540.
    [91] H. Li, X. Liu, T. Zhai, D. Li, and H. Zhou, Li3VO4: A Promising Insertion Anode Material for Lithium-Ion Batteries. Advanced Energy Materials, 2013. 3(4): p. 428-432.
    [92] J. Yi, J. Key, F. Wang, Y. Wang, C. Wang, and Y. Xia, Graphite-anchored lithium vanadium oxide as anode of lithium ion battery. Electrochimica Acta, 2013. 106: p. 534-540.
    [93] J. Zhang, Q. Li, Z. Liao, L. Wang, J. Xu, X. Ren, B. Gao, P.K. Chu, and K. Huo, In situ Synthesis of V2O3-Intercalated N-doped Graphene Nanobelts from VOx-Amine Hybrid as High-Performance Anode Material for Alkali-Ion Batteries. ChemElectroChem, 2018. 5(10): p. 1387-1393.
    [94] L. Du, H. Lin, Z. Ma, Q. Wang, D. Li, Y. Shen, W. Zhang, K. Rui, J. Zhu, and W. Huang, Using and recycling V2O5 as high performance anode materials for sustainable lithium ion battery. Journal of Power Sources, 2019. 424: p. 158-164.
    [95] G. Silversmit, D. Depla, H. Poelman, G.B. Marin, and R. De Gryse, Determination of the V2p XPS binding energies for different vanadium oxidation states (V5+ to V0+). Journal of Electron Spectroscopy and Related Phenomena, 2004. 135(2): p. 167-175.
    [96] E. Hryha, E. Rutqvist, and L. Nyborg, Stoichiometric vanadium oxides studied by XPS. Surface and Interface Analysis, 2012. 44(8): p. 1022-1025.
    [97] R. Ran, J.G. Mcevoy, and Z. Zhang, Synthesis and Optimization of Visible Light Active BiVO4 Photocatalysts for the Degradation of RhB. International Journal of Photoenergy, 2015. 2015: p. 14.
    [98] S. Youn, S. Jeong, and D.H. Kim, Effect of oxidation states of vanadium precursor solution in V2O5/TiO2 catalysts for low temperature NH3 selective catalytic reduction. Catalysis Today, 2014. 232: p. 185-191.
    [99] S.-H. Jeon, P. Xu, N.H. Mack, L.Y. Chiang, L. Brown, and H.-L. Wang, Understanding and Controlled Growth of Silver Nanoparticles Using Oxidized N-Methyl-pyrrolidone as a Reducing Agent. The Journal of Physical Chemistry C, 2010. 114(1): p. 36-40.
    [100] Y.V. Fedoseeva, A.S. Orekhov, G.N. Chekhova, V.O. Koroteev, M.A. Kanygin, B.V. Senkovskiy, A. Chuvilin, D. Pontiroli, M. Riccò, L.G. Bulusheva, and A.V. Okotrub, Single-Walled Carbon Nanotube Reactor for Redox Transformation of Mercury Dichloride. ACS Nano, 2017. 11(9): p. 8643-8649.
    [101] M.C. Biesinger, L.W.M. Lau, A.R. Gerson, and R.S.C. Smart, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Applied Surface Science, 2010. 257(3): p. 887-898.
    [102] S. Uematsu, Z. Quan, Y. Suganuma, and N. Sonoyama, Reversible lithium charge–discharge property of bi-capped Keggin-type polyoxovanadates. Journal of Power Sources, 2012. 217: p. 13-20.
    [103] C.J. Wen, B.A. Boukamp, R.A. Huggins, and W. Weppner, Thermodynamic and Mass Transport Properties of  “ LiAl ” Journal of The Electrochemical Society, 1979. 126(12): p. 2258-2266.
    [104] M. Park, X. Zhang, M. Chung, G.B. Less, and A.M. Sastry, A review of conduction phenomena in Li-ion batteries. Journal of Power Sources, 2010. 195(24): p. 7904-7929.
    [105] X. Wang, B. Qin, D. Sui, Z. Sun, Y. Zhou, H. Zhang, and Y. Chen, Facile Synthesis of Carbon-Coated Li3VO4 Anode Material and its Application in Full Cells. Energy Technology, 2018. 6(10): p. 2074-2081.
    [106] J. Liu, Z. Chen, S. Chen, B. Zhang, J. Wang, H. Wang, B. Tian, M. Chen, X. Fan, Y. Huang, T.C. Sum, J. Lin, and Z.X. Shen, “Electron/Ion Sponge”-Like V-Based Polyoxometalate: Toward High-Performance Cathode for Rechargeable Sodium Ion Batteries. ACS Nano, 2017. 11(7): p. 6911-6920.
    [107] X. Liu, H.-G. Jung, S.-O. Kim, H.-S. Choi, S. Lee, J.H. Moon, and J.K. Lee, Silicon/Copper Dome-Patterned Electrodes for High-Performance Hybrid Supercapacitors. Scientific Reports, 2013. 3(1): p. 3183.
    [108] L. Kong, C. Zhang, J. Wang, W. Qiao, L. Ling, and D. Long, Free-Standing T-Nb2O5/Graphene Composite Papers with Ultrahigh Gravimetric/Volumetric Capacitance for Li-Ion Intercalation Pseudocapacitor. ACS Nano, 2015. 9(11): p. 11200-11208.
    [109] K. Leng, F. Zhang, L. Zhang, T. Zhang, Y. Wu, Y. Lu, Y. Huang, and Y. Chen, Graphene-Based Li-Ion Hybrid Supercapacitors with Ultrahigh Performance. Nano Research, 2013. 6(8): p. 581-592.
    [110] W.-H. Qu, F. Han, A.-H. Lu, C. Xing, M. Qiao, and W.-C. Li, Combination of a SnO2–C Hybrid Anode and a Tubular Mesoporous Carbon Cathode in a High Energy Density Non-Aqueous Lithium Ion Capacitor: Preparation and Characterisation. Journal of Materials Chemistry A, 2014. 2(18): p. 6549-6557.
    [111] H.S. Choi, J.H. Im, T. Kim, J.H. Park, and C.R. Park, Advanced Energy Storage Device: a Hybrid BatCap System Consisting of Battery–Supercapacitor Hybrid Electrodes Based on Li4Ti5O12–Activated-Carbon Hybrid Nanotubes. Journal of Materials Chemistry, 2012. 22(33): p. 16986-16993.
    [112] H. Wang, C. Guan, X. Wang, and H.J. Fan, A High Energy and Power Li-Ion Capacitor Based on a TiO2 Nanobelt Array Anode and a Graphene Hydrogel Cathode. Small, 2015. 11(12): p. 1470-1477.
    [113] K. Kuepper, M. Neumann, A.J.M. Al-Karawi, A. Ghosh, S. Walleck, T. Glaser, P. Gouzerh, and A. Müller, Immediate Formation/Precipitation of Icosahedrally Structured Iron–Molybdenum Mixed Oxides from Solutions Upon Mixing Simple Iron(III) and Molybdate Salts. Journal of Cluster Science, 2014. 25(1): p. 301-311.
    [114] A. Ostroushko, I. Gagarin, M. Tonkushina, K. Grzhegorzhevskii, and O. Russkikh, Association of Spherical Porous Nanocluster Keplerate-Type Polyoxometalate Mo72Fe30 with Biologically Active Substances. Journal of Cluster Science, 2018. 29(1): p. 111-120.
    [115] K.V. Grzhegorzhevskii, M.O. Tonkushina, A.V. Fokin, K.G. Belova, and A.A. Ostroushko, Coordinative interaction between nitrogen oxides and iron–molybdenum POM Mo72Fe30. Dalton Transactions, 2019. 48(20): p. 6984-6996.
    [116] Z. Zhang, W. Li, T.-W. Ng, W. Kang, C.-S. Lee, and W. Zhang, Iron(ii) molybdate (FeMoO4) nanorods as a high-performance anode for lithium ion batteries: structural and chemical evolution upon cycling. Journal of Materials Chemistry A, 2015. 3(41): p. 20527-20534.
    [117] O. Borodin, M. Olguin, C. Spear, K. Leiter, J. Knap, G. Yushin, A. Childs, and K. Xu, (Invited) Challenges with Quantum Chemistry-Based Screening of Electrochemical Stability of Lithium Battery Electrolytes. ECS Transactions, 2015. 69(1): p. 113-123.
    [118] K. Paul, L. Matthew, N. Petr, and B. Erik, Influence of VC and FEC Additives on Interphase Properties of Carbon in Li-Ion Cells Investigated by Combined EIS & EQCM-D. 2020.
    [119] M. Nie, J. Demeaux, B.T. Young, D.R. Heskett, Y. Chen, A. Bose, J.C. Woicik, and B.L. Lucht, Effect of Vinylene Carbonate and Fluoroethylene Carbonate on SEI Formation on Graphitic Anodes in Li-Ion Batteries. Journal of The Electrochemical Society, 2015. 162(13): p. A7008-A7014.
    [120] A. Wang, S. Kadam, H. Li, S. Shi, and Y. Qi, Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Computational Materials, 2018. 4(1): p. 15.
    [121] K. Xu and A. Von Wald Cresce, Li+-solvation/desolvation dictates interphasial processes on graphitic anode in Li ion cells. Journal of Materials Research, 2012. 27(18): p. 2327-2341.
    [122] K.K. Bharathi, B. Moorthy, H.K. Dara, L. Durai, and D.K. Kim, Electrochemical properties of Na0.5Bi0.5TiO3 perovskite as an anode material for sodium ion batteries. Journal of Materials Science, 2019. 54(20): p. 13236-13246.
    [123] X. Xu, Y. Wan, J. Liu, Y. Chen, L. Li, X. Wang, G. Xue, and D. Zhou, Encapsulating iron oxide@carbon in carbon nanofibers as stable electric conductive network for lithium-ion batteries. Electrochimica Acta, 2017. 246: p. 766-775.
    [124] Y. Zhao, X. Zhai, D. Yan, C. Ding, N. Wu, D. Su, Y. Zhao, H. Zhou, X. Zhao, J. Li, and H. Jin, Rational construction the composite of graphene and hierarchical structure assembled by Fe2O3 nanosheets for lithium storage. Electrochimica Acta, 2017. 243: p. 18-25.
    [125] E.C. Almeida, M. Abbate, and J.M. Rosolen, Formation of Li2O in a chemically Li-intercalated V2O5 xerogel. Solid State Ionics, 2001. 140(3): p. 241-248.
    [126] G. Du, K.H. Seng, Z. Guo, J. Liu, W. Li, D. Jia, C. Cook, Z. Liu, and H. Liu, Graphene–V2O5·nH2O xerogel composite cathodes for lithium ion batteries. RSC Advances, 2011. 1(4): p. 690-697.
    [127] B. Ravel and M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. Journal of Synchrotron Radiation, 2005. 12(4): p. 537-541.
    [128] H.-Y. Wang, H.-Y. Chen, Y.-Y. Hsu, U. Stimming, H.M. Chen, and B. Liu, Modulation of Crystal Surface and Lattice by Doping: Achieving Ultrafast Metal-Ion Insertion in Anatase TiO2. ACS Applied Materials & Interfaces, 2016. 8(42): p. 29186-29193.
    [129] D.C. Koningsberger, B.L. Mojet, G.E. Van Dorssen, and D.E. Ramaker, XAFS spectroscopy; fundamental principles and data analysis. Topics in Catalysis, 2000. 10(3): p. 143-155.
    [130] C. Ho, I.D. Raistrick, and R.A. Huggins, Application of A‐C Techniques to the Study of Lithium Diffusion in Tungsten Trioxide Thin Films. Journal of The Electrochemical Society, 1980. 127(2): p. 343-350.
    [131] L. Wang, Y. Zhang, H. Guo, J. Li, E.A. Stach, X. Tong, E.S. Takeuchi, K.J. Takeuchi, P. Liu, A.C. Marschilok, and S.S. Wong, Structural and Electrochemical Characteristics of Ca-Doped “Flower-like” Li4Ti5O12 Motifs as High-Rate Anode Materials for Lithium-Ion Batteries. Chemistry of Materials, 2018. 30(3): p. 671-684.
    [132] M.D. Levi and D. Aurbach, Diffusion Coefficients of Lithium Ions during Intercalation into Graphite Derived from the Simultaneous Measurements and Modeling of Electrochemical Impedance and Potentiostatic Intermittent Titration Characteristics of Thin Graphite Electrodes. The Journal of Physical Chemistry B, 1997. 101(23): p. 4641-4647.
    [133] B. Zou, Q. Hu, D. Qu, R. Yu, Y. Zhou, Z. Tang, and C. Chen, A high energy density full lithium-ion cell based on specially matched coulombic efficiency. Journal of Materials Chemistry A, 2016. 4(11): p. 4117-4124.
    [134] N. Li, Z. Chen, W. Ren, F. Li, and H.-M. Cheng, Flexible graphene-based lithium ion batteries with ultrafast charge and discharge rates. Proceedings of the National Academy of Sciences, 2012. 109(43): p. 17360-17365.
    [135] L. Jin, R. Gong, J. Zheng, C. Zhang, Y. Xia, and J.P. Zheng, Fabrication of Dual-Modified Carbon Network Enabling Improved Electronic and Ionic Conductivities for Fast and Durable Li2TiSiO5 Anodes. ChemElectroChem, 2019. 6(12): p. 3020-3029.
    [136] P. Xiong, L. Peng, D. Chen, Y. Zhao, X. Wang, and G. Yu, Two-dimensional nanosheets based Li-ion full batteries with high rate capability and flexibility. Nano Energy, 2015. 12: p. 816-823.

    QR CODE