研究生: |
吳一凡 Wu, Yi-Fan |
---|---|
論文名稱: |
探討成人開心手術對血液流變特性的影響 Hemo-rheological changes in cardiac surgery patients |
指導教授: |
陳彥龍
Chen, Yeng-Long |
口試委員: |
蔡建松
Tsai, Chien-Sung 董奕鍾 Tung, Yi-Chung 王潔 Wang, Jane 許博順 Hsu, Po-Shun |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2018 |
畢業學年度: | 107 |
語文別: | 英文 |
論文頁數: | 100 |
中文關鍵詞: | 血液流變學 、黏彈性 、紅血球聚集 、開心手術 、體外循環 、心血管疾病 |
外文關鍵詞: | Hemo-rheology, Viscoelasticity, RBC Aggregation, Cardiac Surgery, Cardiopulmonary Bypass, Cardiovascular disease |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今心血管疾病與相關併發症已成為十大死因常見的排行中,因此開心手術搭配體外循環機來維持生命被視為常見的治療手段之一,包含:心臟繞道手術、瓣膜置換…等。然而手術所造成的發炎反應將會造成紅血球的聚集與凝集,將容易導致靜脈栓塞、中風、記憶喪失…等術後併發症。
血液流變學(Hemorheology)多年來在臨床上已被運用在血液循環效率與保健上,由於其紅血球的聚集程度將直接影響血液的物理特性。本研究中,我們認為術後併發症可能與血液黏滯度變化有關,在實驗設計中,我們量測開心手術病人術後的血液黏性、彈性模數、紅血球聚集影像、生化數值的變化影響,並與手術前狀態及健康正常人相比。血液流變學與紅血球聚集影響將分別於病人手術前(M0),手術後與長期復原變化 (M1 ~ M3),以及獨立招募的正常族群。實驗使用流變儀Anton-Paar MCR501量測黏度與彈性模數,此外,我們也以問卷與病歷來記錄病人日常習慣與生化數據作為參考,譬如:抽煙、喝酒、或低密度膽固醇…等。
實驗結果顯示,術後一天(M1)和術後一星期(M2)的紅血球血比容(HCT)與術前(M0)相比有發現顯著的降低,這可能與體外循環所造成血液稀釋影響有關,但在調整於相同血比容下,實驗結果觀察到手術後的紅血球聚集變得較劇烈,形成較大聚集面積與較圓的聚集形狀,這與血漿內的纖維蛋白上升濃度有顯著正相關。同樣在這期間,當校正於相同濃度下的血液黏度在術後病人(M1, M2)於低剪切速率下也有顯著的升高,意味著手術後短期內病人的血液有具較高的降伏應力(yield stress),表示具有較高的紅血球聚集結構與類膠體特性,但在手術後半年~一年(M3),多數的參數皆回歸正常數值。
本研究量測成果初步對於施加開心手術治療之心血管疾病患者流變學特性的臨床診斷與病程追蹤,提供新的思考與助力,希望能對患者做出貢獻。
Cardiovascular diseases (CVD) and heart-related complications are the most common causes of death worldwide at this time. Coronary Artery Bypass Graft (CABG) and Mitral Valve Replacement (MVR) surgeries are widely accepted treatments for advanced atherosclerosis and coronary artery disease. However, elevated red blood cell (RBC) aggregation may be related to common side-effects such as microinfarction systemic inflammation, and deep vein thrombosis during rehabilitation.
Hemorheology is an established tool for monitoring the blood perfusion efficacy and health care. The blood physical properties changes and the correlation between blood microstructure, viscoelastic response and biochemical changes following cardiac surgery with cardiopulmonary bypass (CPB) have been investigated. This study investigated blood physical properties changes and the correlation between blood microstructure, viscoelastic response and biochemical changes following cardiac surgery with cardiopulmonary bypass (CPB). The blood rheology and RBC aggregate size were measured in the pre-surgery disease state (M0), post-surgery state and long-term recovery state (from M1 to M3) of cardiac surgical patients and healthy subjects. The Physica Rheometer MCR 501(Anton-Paar, Graz, Austria) was used to measure viscosity and elastic moduli. The life questionnaire also recorded patients habits that may be indicators for CVD (smoking habit, blood pressure, and low-density lipoprotein cholesterol).
One day (M1) and one week (M2), the patient RBC concentration was significantly lower due to CPB. At 1% HCT, the RBC aggregate shape became larger and more rounded, which is correlated to the elevated plasma fibrinogen concentration caused by the systemic inflammatory response. During the same period, the low shear rate viscosity adjusted by normalizing RBC concentration increased significantly, as did the yield stress, indicating more solid-like behavior for blood. Six months to one year later (M3), all the physical and biochemical properties measured returned to baseline.
These rheological properties could serve as distinct indicators for monitoring post-surgical recovery as well as identifying patients requiring surgery.
1. Milnor, W.R., Hemodynamics. 1982: Williams & Wilkins.
2. Hsiu, H., et al., Differences in the Skin‐Surface Laser Doppler Signals Between Polycystic Ovary Syndrome and Normal Subjects. Microcirculation, 2014. 21(2): p. 124-130.
3. Zouache, M., et al., Form, shape and function: segmented blood flow in the choriocapillaris. Scientific reports, 2016. 6: p. 35754.
4. Black, J. and G. Hastings, Handbook of biomaterial properties. 2013.
5. Baskurt, O.K. and H.J. Meiselman, Blood rheology and hemodynamics. 3, 2003. 29(5): p. 435-50.
6. Maharshak, N., et al., Increased strength of erythrocyte aggregates in blood of patients with inflammatory bowel disease. Inflammatory bowel diseases, 2009. 15(5): p. 707-713.
7. Ami, R.B., et al., Parameters of red blood cell aggregation as correlates of the inflammatory state. Am J Physiol Heart Circ Physiol, 2001. 280(5): p. H1982-8.
8. Dintenfass, L., Clinical applications of blood viscosity factors and functions: especially in the cardiovascular disorders. Biorheology, 1979. 16(1-2): p. 69.
9. Koenig, W., et al., Plasma viscosity and the risk of coronary heart disease results from the monica-augsburg cohort study, 1984 to 1992. Arteriosclerosis, thrombosis, and vascular biology, 1998. 18(5): p. 768-772.
10. Marcinkowska-Gapińska, A., et al., Comparison of three rheological models of shear flow behavior studied on blood samples from post-infarction patients. Medical & biological engineering & computing, 2007. 45(9): p. 837-844.
11. Presti, R.L., E. Hopps, and G. Caimi, Hemorheological abnormalities in human arterial hypertension. Korea-Australia Rheology Journal, 2014. 26(2): p. 199-204.
12. Le Devehat, C., M. Vimeux, and T. Khodabandehlou, Blood rheology in patients with diabetes mellitus. Clinical hemorheology and microcirculation, 2004. 30(3, 4): p. 297-300.
13. Moreno, L., et al., Effect of cholesterol and triglycerides levels on the rheological behavior of human blood. Korea-Australia Rheology Journal, 2015. 27(1): p. 1-10.
14. Drasler, W., C. Smith 2nd, and K. Keller, Viscoelastic properties of the oxygenated sickle erythrocyte membrane. Biorheology, 1988. 26(5): p. 935-949.
15. Cho, Y.I., D.J. Cho, and R.S. Rosenson, Endothelial shear stress and blood viscosity in peripheral arterial disease. Current atherosclerosis reports, 2014. 16(4): p. 1523-3804.
16. Dormandy, J., Effects of anaesthesia and surgery on the flow properties of blood. Microcirculation, endothelium, and lymphatics, 1984. 1(2): p. 151-168.
17. Cho, Y.I., W.-T. Kim, and K.R. Kensey, A new scanning capillary tube viscometer. Review of scientific instruments, 1999. 70(5): p. 2421-2423.
18. Varchanis, S., et al., How viscoelastic is human blood plasma? Soft matter, 2018.
19. Brust, M., et al., Rheology of human blood plasma: Viscoelastic versus Newtonian behavior. Physical Review Letters, 2013. 110(7): p. 078305.
20. Matrai, A., R. Whittington, and E. Ernst, A simple method of estimating whole-blood viscosity at standardized hematocrit. Clinical Hemorheology and Microcirculation, 1987. 7(2): p. 261-265.
21. Blair, G.S., An equation for the flow of blood, plasma and serum through glass capillaries. 1959. 183: p. 613.
22. Merrill, E.W. and G.A. Pelletier, Viscosity of human blood: transition from Newtonian to non-Newtonian. Journal of applied physiology, 1967. 23(2): p. 178-182.
23. Casson, N., Rheology of disperse systems. Pergamon Press, London, 1959: p. 84.
24. Apostolidis, A.J. and A.N. Beris, Modeling of the blood rheology in steady-state shear flows. Journal of Rheology, 2014. 58(3): p. 607-633.
25. Robertson, A.M., A. Sequeira, and R.G. Owens, Rheological models for blood, in Cardiovascular mathematics. 2009, Springer. p. 211-241.
26. Tsai, M.A., R.S. Frank, and R.E. Waugh, Passive mechanical behavior of human neutrophils: power-law fluid. Biophysical journal, 1993. 65: p. 2078-2088.
27. Thurston, G.B., Viscoelasticity of human blood. Biophysical journal, 1972. 12(9): p. 1205.
28. Chien, S., et al., Viscoelastic properties of human blood and red cell suspensions. Biorheology, 1975. 12(6): p. 341-346.
29. Fåhraeus, R., The suspension stability of the blood. Physiological Reviews, 1929. 9(2): p. 241-274.
30. Kisler, K., et al., Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease. Nature Reviews Neuroscience, 2017. 18(7): p. 419.
31. Miller, L.D.a.D.G.J.a.G.E., Viscosity of blood in normal subjects and in patients suffering from coronary occlusion and arterial thrombosis: An in vitro study in the absence of anticoagulants, by means of a rotational cone-in-cone trolley viscometer. American Heart Journal, 1966. 71(5): p. 587 - 600.
32. Chien, S., et al., Blood viscosity: influence of erythrocyte deformation. Science, 1967. 157(3790): p. 827-9.
33. Chien, S., et al., Blood viscosity: influence of erythrocyte aggregation. Science, 1967. 157(3790): p. 829-31.
34. Chien, S. and K.-M. Jan, Ultrastructural basis of the mechanism of rouleaux formation. Microvascular Research, 1973. 5(2): p. 155-166.
35. Chien, S., et al., Shear-dependent deformation of erythrocytes in rheology of human blood. Am J Physiol, 1970. 219(1): p. 136-42.
36. Chien, S., Present state of blood rheology. 1972: Karger, Basel.
37. Jan, K.-m., Red cell interactions in macromolecular suspension. Biorheology, 1979. 16(3): p. 137-148.
38. Copley, A.L., On red blood cell (RBC) filterability, presented in 1958 by Robin Fåraeus, his controversy to Knisely’s ‘blood sludge’and Copley’s concept on blood cellular clumping. Clinical Hemorheology and Microcirculation, 1981. 1(3): p. 219-225.
39. Foresto, P., et al., Evaluation of red blood cell aggregation in diabetes by computarized image analysis. MEDICINA-BUENOS AIRES, 2000. 60(5): p. 570-572.
40. Foresto, P., et al., Comparative analysis of aggregate shapes by digitized microscopic images. Application to hypertension. Clinical hemorheology and microcirculation, 2002. 26(3): p. 137-144.
41. Arbel, Y., et al., Erythrocyte aggregation as a cause of slow flow in patients of acute coronary syndromes. Int J Cardiol, 2012. 154(3): p. 322-7.
42. Price, J.F., et al., Relationship between smoking and cardiovascular risk factors in the development of peripheral arterial disease and coronary artery disease; Edinburgh Artery Study. European heart journal, 1999. 20(5): p. 344-353.
43. Lowe, G., et al., Blood viscosity, fibrinogen, and activation of coagulation and leukocytes in peripheral arterial disease and the normal population in the Edinburgh Artery Study. Circulation, 1993. 87(6): p. 1915-1920.
44. Wiewiora, M., et al., Association between hemorheological alteration and clinical diagnosis of metabolic syndrome among patients qualified for bariatric surgery. Clinical hemorheology and microcirculation, 2014. 56(2): p. 101-109.
45. Wiewiora, M., et al., The effects of weight loss surgery on blood rheology in severely obese patients. Surgery for Obesity and Related Diseases, 2015. 11(6): p. 1307-1314.
46. Jan, K.-M., S. Chien, and J.T. Bigger, Observations on blood viscosity changes after acute myocardial infarction. Circulation, 1975. 51(6): p. 1079-1084.
47. Scholz, P.M., et al., Correlation of blood rheology with vascular resistance in critically ill patients. Journal of applied physiology, 1975. 39(6): p. 1008-1011.
48. Tomaiuolo, G., et al., Blood linear viscoelasticity by small amplitude oscillatory flow. Rheologica Acta, 2016. 55(6): p. 485-495.
49. Asimakopoulos, G., et al., Lung injury and acute respiratory distress syndrome after cardiopulmonary bypass. The Annals of thoracic surgery, 1999. 68(3): p. 1107-1115.
50. Blessing, F., et al., Prevention of early graft occlusion after coronary bypass grafting by post-operative reduction of plasma fibrinogen by HELP apheresis. First evaluation of 12 patients treated during our study (44 bypasses). Zeitschrift fur Kardiologie, 2003. 92.
51. Gilman, S., Neurological complications of open heart surgery. Annals of neurology, 1990. 28(4): p. 475-476.
52. Newman, M.F., et al., Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. New England Journal of Medicine, 2001. 344(6): p. 395-402.
53. Karkouti, K., et al., Hemodilution during cardiopulmonary bypass is an independent risk factor for acute renal failure in adult cardiac surgery. The Journal of thoracic and cardiovascular surgery, 2005. 129(2): p. 391-400.
54. Groom, R.C., High or low hematocrits during cardiopulmonary bypass for patients undergoing coronary artery bypass graft surgery? An evidence-based approach to the question. Perfusion, 2002. 17(2): p. 99-102.
55. Mvere, D. and E. Vinelli, Manual on the management, maintenance and use of blood cold chain equipment. 2005.
56. Sousa, P., et al., Shear viscosity and nonlinear behavior of whole blood under large amplitude oscillatory shear. Biorheology, 2013. 50(5-6): p. 269-282.
57. Baskurt, O., et al., New guidelines for hemorheological laboratory techniques. Clinical hemorheology and microcirculation, 2009. 42(2): p. 75--97.
58. Ben-Ami, R., et al., A synergistic effect of albumin and fibrinogen on immunoglobulin-induced red blood cell aggregation. American Journal of Physiology-Heart and Circulatory Physiology, 2003. 285(6): p. H2663-H2669.
59. Chen, S., et al., Monitoring of erythrocyte aggregate morphology under flow by computerized image analysis. Biorheology, 1995. 32(4): p. 487-496.
60. Chen, S., et al., Enhanced aggregability of red blood cells of beta-thalassemia major patients. American Journal of Physiology-Heart and Circulatory Physiology, 1996. 270(6).
61. Larsson, H., H. Odeberg, and L. Bohlin, Studies of blood viscosity with a newly constructed rotational viscometer which operates via a desk top computer. Scandinavian journal of clinical and laboratory investigation, 1983. 43(6): p. 493-502.
62. Vlastos, G., et al., The effect of parallel combined steady and oscillatory shear flows on blood and polymer solutions. Rheologica Acta, 1997. 36(2): p. 160-172.
63. Copley, A., et al., Microscopic observations of viscoelasticity of human blood in steady and oscillatory shear. Biorheology, 1975. 12(5): p. 257-263.
64. Airey, G.D., Use of black diagrams to identify inconsistencies in rheological data. Road Materials and Pavement Design, 2002. 3(4): p. 403-424.
65. Qian, Y. and S. Kawashima, Use of creep recovery protocol to measure static yield stress and structural rebuilding of fresh cement pastes. Cement and Concrete Research, 2016. 90: p. 73-79.
66. Fabry, T.L., Mechanism of erythrocyte aggregation and sedimentation. Blood, 1987. 70(5): p. 1572-1576.
67. Mishra, A.K., A Study to Compare Whole Blood Viscosity Between Diabetics With and Without Retinopathy. Indian Journal of Applied Research, 2016. 5(11).
68. Lee, A.J., et al., Blood viscosity and elevated carotid intima-media thickness in men and women the Edinburgh Artery Study. Circulation, 1998. 97(15): p. 1467-1473.
69. Chien, S., S. Usami, and J.F. Bertles, Abnormal rheology of oxygenated blood in sickle cell anemia. Journal of Clinical Investigation, 1970. 49(4): p. 623.
70. Blair, G.S., An equation for the flow of blood, plasma and serum through glass capillaries. Nature, 1959. 183(4661): p. 613-614.
71. Merrill, E., et al., Rheology of human blood, near and at zero flow: effects of temperature and hematocrit level. Biophysical Journal, 1963: p. 199-213.
72. Fedosov, D.A., et al., Predicting human blood viscosity in silico. Proceedings of the National Academy of Sciences, 2011. 108(29): p. 11772-11777.
73. Trappe, V. and D. Weitz, Scaling of the viscoelasticity of weakly attractive particles. Physical review letters, 2000. 85(2): p. 449.
74. Alves, M.M., C. Rocha, and M.P. Gonçalves, Study of the rheological behaviour of human blood using a controlled stress rheometer. Clinical hemorheology and microcirculation, 2013. 53(4): p. 369-386.
75. Duyuler PT, D.S., İleri M, Demir M, Dolu AK, Başyiğit F, Evaluation of Whole Blood Viscosity in Patients with Aortic Sclerosis. The Journal of Tehran Heart Center journal, 2017. 12(1): p. 6-10.
76. Mchedlishvili, G., et al., Microcirculatory stasis induced by hemorheological disorders: further evidence. Microcirculation, 1999. 6(2): p. 1549-8719.
77. Mchedlishvili, G., et al., Comparative values of erythrocyte aggregability versus other indices of hemorheological disorders in patients with ischemic brain infarcts. Clinical hemorheology and microcirculation, 2000. 22(1): p. 9-15.
78. Baskurt, O.K., et al., Modulation of endothelial nitric oxide synthase expression by red blood cell aggregation. American Journal of Physiology-Heart and Circulatory Physiology, 2004. 286(1): p. H222-H229.
79. Grotemeyer, K.C., et al., Association of elevated plasma viscosity with small vessel occlusion in ischemic cerebral disease. Thrombosis research, 2014. 133(1).
80. Ott, E.O., H. Lechner, and A. Aranibar, High blood viscosity syndrome in cerebral infarction. Stroke, 1974. 5(3): p. 330-333.
81. Fisher, M. and H.J. Meiselman, Hemorheological factors in cerebral ischemia. Stroke, 1991. 22(9): p. 1164-1169.
82. Sloop, G.D., J.J. Weidman, and J.A. St Cyr, Perspective: interesterified triglycerides, the recent increase in deaths from heart disease, and elevated blood viscosity. Therapeutic advances in cardiovascular disease, 2018. 12(1): p. 23-28.
83. Mchedlishvili, G. and N. Maeda, Blood flow structure related to red cell flow: determinant of blood fluidity in narrow microvessels. The Japanese journal of physiology, 2001. 51(1): p. 19-30.
84. Mavroudis, C. and P.A. Ebert, Hemodilution causes decreased compliance in puppies. Circulation, 1978. 58(3 Pt 2): p. I155-9.
85. Scholz, P.M., J.M. Kinney, and S. Chien, Effects of major abdominal operations on human blood rheology. Surgery, 1975. 77(3): p. 351-359.
86. Cavestri, R., et al., Influence of erythrocyte aggregability and plasma fibrinogen concentration on CBF with aging. Acta neurologica scandinavica, 1992. 85(4): p. 292-298.
87. Serruys, P.W., et al., Five-year outcomes after coronary stenting versus bypass surgery for the treatment of multivessel disease: the final analysis of the Arterial Revascularization Therapies Study (ARTS) randomized trial. Journal of the American College of Cardiology, 2005. 46(4): p. 575-581.
88. Abbate, A., et al., Recurrent angina after coronary revascularization: a clinical challenge. European heart journal, 2007. 28(9): p. 1057-1065.
89. Hovav, T., et al., Alteration of red cell aggregability and shape during blood storage. Transfusion, 1999. 39(3): p. 277-281.
90. Romain, A.-J., et al., Effects of exercise training on blood rheology: a meta-analysis. Clinical hemorheology and microcirculation, 2011. 49(1-4): p. 199-205.
91. El-Sayed, M.S., N. Ali, and Z.E.-S. Ali, Haemorheology in exercise and training. Sports Medicine, 2005. 35(8): p. 649-670.