研究生: |
鄭祖昀 Cheng, Tsu-Yun |
---|---|
論文名稱: |
磁流變阻尼器之Duffing Equation動態建模 Using Duffing Equation to Model Magnetorheological Damper Dynamics |
指導教授: |
杜佳穎
Tu, Jia-Ying |
口試委員: |
王志宏
Wang, Jhih-Hong. 陳榮順 Chen, Rong-Shun |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 65 |
中文關鍵詞: | 磁流變阻尼器 、系統識別 、杜芬方程式 |
外文關鍵詞: | Magnetorheological damper, System identification, Duffing equation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
磁流變阻尼器(Magnetorheological damper, MR damper),是一種利用磁流變液(Magnetorheological Fluid, MRF)的流變效應製成的阻尼裝置,並廣泛的應用在基底隔震、土木工程以及機械工程上,和一般被動式阻尼器不同的地方在於其內部流體充滿著磁性懸浮顆粒,沒有外加磁場時就維持一般阻尼器被動式減震較果,通入外加磁場時,內部的磁性顆粒就開始排列並增加流體的阻力,改變阻尼器的力輸出,通過外加磁場大小使阻尼器成為可控制可調變的智能阻尼裝置,相較於一般被動式阻尼器,多了可控制性的性質。然而,磁流變阻尼器是一種高度非線性的裝置,阻尼器的力輸出跟活塞的位移、速度以及外加磁場的大小有關,相較於一般被動式阻尼器力輸出的型式還要複雜得多,多數文獻對於磁流變阻尼器的系統識別方法主要可分為高度非線性函數的 Bouc-Wen 模型以及分段連續函數的Bingham 模型,此種識別方法因為函數的不連續性與高度的非線性性質,因此不適用於線性化迴授控制或參考模型適應型控制等典型非線性控制器。
本論文提出以 Duffing equation 方法進行系統識別,Duffing equation 是一種非線性二階常微分方程式,藉由調整一階項的係數觀察整個非線性系統相位圖由收斂到發散的分歧點(bifurcation),本論文將使用 Duffing equation 藉由調整係數的方式分析各個參數對於磁滯曲線的影響,並歸納出參數調變的步驟,最後使用阻尼器實驗機台測試所獲得的磁滯曲線,利用Duffing equation 方程式所畫出的磁滯曲線,藉由參數調變讓模擬曲線與真實數據曲線重合,以達成系統識別的目的。
Magnetorheological damper (MR damper) is the vibration reduction equipment which is filled with MR fluid in the cylinder and it is used for the purpose of reducing the vibration effects in structural, civil, and mechanical engineering systems. MR damper is different from the ormal passive damper because of the tiny magnetic particles in the cylinder. Therefore, when the applied magnetic field is increased, the suspended magnetic particles become the chain structure, and the effective stiffness of MR damper becomes large. In the absence of magnetic field, the MR fluid behaves like a normal passive damping component. In order to modulate the MR damper force and adjust the associated parameters, various modelling techniques are proposed to identify the MR damper behaviour from researches. The most well-known techniques are Bouc-Wen and Bingham models. These two existing mathematical models of MR damper, including discontinuous and piecewise functions, are non-ideal for numerical computation, stability analysis, and control design. This thesis proposes the Duffing equation for the modelling of MR damper system. Duffing equation is a well-known, continuous, second-order nonlinear differential equation and it has been used to analyse the behaviour of chaotic dynamics, a hardening spring, and structural systems under excitations. By adjusting each parameter of equation analyse the influence of the hysteresis curve and fit the hysteresis curve in order to find the dynamic equation of the MR damper.
1. D. Shook, P. Y. Lin, T. K. Lin, and P. N. Roschke, "A comparative study in the semi-active control of isolated structures", Smart Materials and Structures, 2007. 16(4): pp. 1433-1446.
2. S. Narasimhan, S. Nagarajaiah, and E. A. Johnson, "Smart base-isolated benchmark building part IV: Phase II sample controllers for nonlinear isolation systems", Structural Control and Health Monitoring, 2008. 15(5): pp. 657-672.
3. J. Y. Tu, P. Y. Lin, D. P. Stoten, and G. Li, "Testing of dynamically substructured, base-isolated systems using adaptive control techniques", Earthquake Engineering and Structural Dynamics, 2010. 39(6): pp. 661-681.
4. S. F. Ali and A. Ramaswamy, "Optimal fuzzy logic control for MDOF structural systems using evolutionary algorithms", Engineering Applications of Artificial Intelligence, 2009. 22: pp. 407-419.
5. H. S. Kim and P. N. Roschke, "Design of fuzzy logic controller for smart base isolation system using genetic algorithm", Engineering Structures, 2006. 28(1): pp. 84-96.
6. C. H. Loh, L. Y. Wu, and P. Y. Lin, "Displacement control of isolated structures with semi-active control devices", Journal of Structural Control, 2003. 10(2): pp. 77-100.
7. S. Yan, W. Zheng, and G. Song. "GA-optimized fuzzy logic control of high-rise building for wind loads". in Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2009, March 9, 2009 - March 12, 2009. 2009. San Diego, CA, United states, Society of Photo-Optical Instrumentation Engineers
8. L. Li, G. Song, and J. Ou, "Nonlinear structural vibration suppression using dynamic neural network observer and adaptive fuzzy sliding mode control", Journal of Vibration and Control, 2010. 16(10): pp. 1503-26.
9. Z. S. Huang, C. Wu, and D. S. Hsu, "Semi-Active Fuzzy Control of Mr Damper on Structures by Genetic Algorithm", Journal of Mechanics, 2009. 25(1): pp. 1-6.
10. 林沛暘, P. N. Roschke, 羅俊雄, 鍾立來, and C. P. Chang, "Semi-Active Control of a Structure with an MR Damper". 2002, 國家地震工程研究中心.
11. S. J. Dyke, B. F. Spencer, Jr., M. K. Sain, and J. D. Carlsonl, "Modeling and control of magnetorheological dampers for seismic response reduction", Smart Materials and Structures, 1996. 5(5): pp. 565-575.
12. T. Tse and C. C. Chang, "Shear-mode rotary magnetorheological damper for small-scale structural control experiments", Journal of Structural Engineering, 2004. 130(6): pp. 904-911.
13. M. Brigley, C. Young-Tai, and N. M. Wereley, "Experimental and theoretical development of multiple fluid mode magnetorheological isolators", Journal of Guidance, Control, and Dynamics, 2008. 31(3): pp. 449-459.
14. W. H. Kuo, T. C. Yang, C. C. Hsu, and H. C. Chio, "Study on magnetorheological damper of flow mode", Journal of Technology, 2011. 26(4): pp. 217-223.
15. R. S. Prabakar, C. Sujatha, and S. Narayanan, "Optimal semi-active preview control response of a half car vehicle model with magnetorheological damper", Journal of Sound and Vibration, 2009. 326(3-5): pp. 400-420.
16. G. Z. Yao, F. F. Yap, G. Chen, W. H. Li, and S. H. Yeo, "MR damper and its application for semi-active control of vehicle suspension system", Mechatronics, 2002. 12(7): pp. 963-973.
17. S. J. Moon, L. A. Bergman, and P. G. Voulgaris, "Sliding mode control of cable-stayed bridge subjected to seismic excitation", Journal of Engineering Mechanics-Asce, 2003. 129(1): pp. 71-78.
18. H. Li and J. Wang, "Experimental investigation of the seismic control of a nonlinear soil-structure system using MR dampers", Smart Materials and Structures, 2011. 20(8).
19. B. F. Spencer Jr, S. J. Dyke, M. K. Sain, and J. D. Carlson. "Dynamical model of a magnetorheological damper". in Proceedings of the 1996 12th Conference on Analysis and Computation, April 15, 1996 - April 18, 1996. 1996. Chicago, IL, USA, ASCE.
20. B. F. Spencer Jr, S. J. Dyke, M. K. Sain, and J. D. Carlson, "Phenomenological model for magnetorheological dampers", Journal of Engineering Mechanics, 1997. 123(3): pp. 230-238.
21. G. M. Kamath and N. M. Wereley, "A nonlinear viscoelastic-plastic model for electrorheological fluids", Smart Materials and Structures, 1997. 6(3): pp. 351-359.
22. D. H. Wang and W. H. Liao, "Magnetorheological fluid dampers: A review of parametric modelling", Smart Materials and Structures, 2011. 20(2): pp. 34.
23. L. Pang, G. M. Kamath, and N. M. Wereley. "Dynamic characterization and analysis of magnetorheological damper behavior". in Smart Structures and Materials 1998: Passive Damping and Isolation, 2-3 March 1998. 1998. USA, SPIE-Int. Soc. Opt. Eng.
24. Z. Parlak, T. Engin, and I. Calli. "Optimal design of MR damper via finite element analyses of fluid dynamic and magnetic field". in Elsevier. 2012. Langford Lane, Kidlington, Oxford, OX5 1GB, United Kingdom, Elsevier Ltd.
25. S. B. Choi, S. K. Lee, and Y. P. Park, "A hysteresis model for the field-dependent damping force of a magnetorheological damper", Journal of Sound and Vibration, 2001. 245(2): pp. 375-83.
26. G. Duffing, "Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre Technische Bedeutung". 1918: R, Vieweg & Sohn.
27. T. Kalmár-Nagy and B. Balachandran, "Forced Harmonic Vibration of a Duffing Oscillator with Linear Viscous Damping", in The Duffing Equation. 2011, John Wiley & Sons, Ltd. pp. 139-174.
28. H. B. S. J.M.T. Thompson, "Nonlinear Dynamics and Chaos". 1988: John Wiley & Sons.
29. M. R. Jolly, J. W. Bender, and J. D. Carlson, "Properties and applications of commercial magnetorheological fluids", 1999. 10(1): pp. 5-13.