簡易檢索 / 詳目顯示

研究生: 施佑儒
Shih, Yu Ju
論文名稱: 以周期精確模型優化特定應用的晶片上網路架構
Cycle-Accurate Model for Application-Specific Packet-Based On-Chip Interconnects and Their Optimization
指導教授: 黃稚存
Huang, Chih-Tsun
口試委員: 劉靖家
Liou, Jing-Jia
吳奇峰
Wu, Chi-Feng
陳中和
Chen, Chung-Ho
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 40
中文關鍵詞: 晶片網路網路最佳化電子系統層級模型
外文關鍵詞: Network-on-Chip, Interconnect optimization, ESL Model
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單晶片系統中所擁有的核心數量隨著半導體科技的發展而快速增加,在應用方面存取資料的比例也越來越高,晶片中各個模組的溝通逐漸成為整體效能的瓶頸。
    晶片上網路架構(NoC)是解決這類溝通問題的一種有效方法,一些商業應用如Alteris FlexNoC可以產生出由數種組件組合而成的網路。

    由於晶片網路對效能的影響甚鉅,有許多研究提出不同的電子系統層級的時間模型來進行效能、面積、耗能等各方面的評估以及縮短設計的時程。在這類的模型中,準確度和模擬速度的取捨往往是關鍵。

    在這篇論文中,我們以Flit Propagation Model為基礎,提出我們的時間模型。我們的時間模型可以支援像FlexNoC這類由組件組成的網路,包括規則以及不規則的架構。我們的模型都有與硬體做時間的比對,確保每個週期的行為都是相同的。另外我們也提出了一個針對設計空間作探索的流程,包括根據需求建立網路架構以及使用時間模型進行最佳化。

    我們以一個實際的例子作為實驗的目標。以我們的時間模型進行最佳化後,讀取延遲可以降低到未進行最佳化時的43.6\%,同時只使用88.1\%的面積。


    On-chip interconnect has become the performance bottleneck as the number of cores and modules in a chip are increasing, particularly in data-intensive applications. In the modern System-on-Chip (SoC), the Network-on-Chip (NoC) is used to solve this problem.
    Several commercial approaches such as Alteris FlexNoC provides on-chip networks constructed from primitive building blocks, based on packet-based communication protocol.

    The interconnect design has a significant impact on the performance, area, and power consumption. Recently, many Electronic System-Level (ESL) timing models have been proposed to explore the design space with the constrained time-to-market. The accuracy and simulation speed are the trade-off in ESL simulation.

    In this thesis, we extend the concept of flit propagation model and present a timing model of flit transactions for primitive components in irregular packet-based interconnect fabrics. Based on the
    model, we then develop a fast timing simulator for on-chip
    interconnects with a 100\% cycle accuracy when validated with
    an industrial RTL implementation. We also propose a design space exploration flow to generate a partial-crossbar-based interconnect from the connection graph. With our timing simulator, we can evaluate and optimize the architectures of interconnects by
    adjusting topologies, FIFOs, outstanding buffers, data widths,
    and clocking.

    In a case of high-performance networking SoC,
    the proposed approach can explore the design space effectively,
    minimizing the latency of intercommunication to 43.6\% as
    compared with the initial architecture. The area cost can also
    be reduced to 88.1\% at the same time.
    With the different bandwidth requirement, the interconnect architecture can be optimized accordingly. The exploration result shows the trade-off between performance and area can be made easily with our timing model of on-chip-interconnect.

    1. Introduction....1 2. Packet-Based On-Chip Interconnect Fabrics....3 3. Proposed Cycle Accurate Simulation Model....5 4. Design Space Exploration Flow and Our Use Case....21 5. Experimental Results....26 6. Conclusion and Future Work....37

    1. A. B. Achballah and S. B. Saoud, "A Survey of Network-On-Chip Tools", (IJACSA) International Journal of Advanced Computer Science and Applications, vol. 4m no. 9, pp. 61-67, 2013.
    2. A. Cilardo and R. Fusella, "Design automation for application-specific on-chip interconnects: A survey," Integration, the VLSI Journal, vol. 52, no. C, pp. 102-121, Jan. 2016.
    3. S. Murali, L. Benini, and G.D. Micheh, "An application-specific design methodology for on-chip crossbar generation," IEEE Trans. Computer-Aided Design of Integrated Circuits and Systems, vol. 26, no. 7, pp. 1283-1296, July 2007.
    4. M. Jun and D. Woo and E. Y. Chung, "Partial Connection-Aware Topology Synthesis for On-Chip Cascaded Crossbar Network," IEEE Trans. Computers, vol. 64, no. 1, pp. 73-86, Jan 2012.
    5. S. Paricha, N. D. Dutt, E. Bozorgzadeh, and M. Ben-Romdhane, "FABSYN: floorplan-aware bus architecture sysnthesis," IEEE Trans. VLSI Systems, vol. 14, no.3, pp. 241-253, March 2006.
    6. C. Lee, S. Kim, and S. Ha, "A systematic design space exploration of MPSoC based on synchronous data flow specification," Journal of Signal Processing Systems, vol. 58, no. 2, pp. 193-213, 2010.
    7. V. Catania, A. Mineo, S. Monteleone, M. Palesi, and D. Patti, "Cycle-accurate network on chip simulation with noxim," ACM Trans. Model, Comput. Simul., vol. 27, no. 1, pp. 4:1-4:25, Aug. 2016.
    8. N. Jiang, J. Balfour, D. U. Becker, B. Towles, W. J. Dally, G. Michelogiannakis, and J. Kim, "A detailed and flexible cycle-accurate network-on-chip simulator," in 2013 IEEE International Symposium on Performance Analysis of Systems and Software (IS-PASS), April 2013, pp. 86-96
    9. R.-S. Hsu, J.-L. Chiu, C.-K. Yu, and J.-J. Liou, "A fast and accurate network-on-chip timing simulator with a flit propagation model," in Proc. Asia and South Pacific Design Automation Conf. (ASP-DAC), Jan 2015, pp. 797-802.
    10. J.-J. Lecier and G. Baillieu, "Application driven network-on-chip architecture exploration & refinement for a complex SoC," Design Automation for Embedded Systems, vol. 15, no. 2, pp. 133-158, 2011.
    11. A. Ltd, "Amba axi and ace Protocol specification," http:://www.arm.com, May 2011.
    12. A. S. Initiative, "Open core protocol specification release 3.0," Oct. 2013

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE