簡易檢索 / 詳目顯示

研究生: 顏銘裕
Ming-Yu Yen
論文名稱: 廣角入射X光波導管之X光干涉效應
An investigation of interference effects in wide-angle incident X-ray waveguides
指導教授: 張石麟
Shih-Lin Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 64
中文關鍵詞: 波導管X光廣角干涉繞射
外文關鍵詞: waveguide, x-ray, wide-angle, inteference
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是研究廣角入射X光波導管之干涉效應。一般X光波導管是選用小角度(掠角)入射或者是從波導管前方正向入射,然而我們在此提供了另一種方式為廣角(大角度)入射波導管,使得入射方向不受掠角及小角度之限制。我們的方法是使用四吋矽晶圓,其垂直方向為[0 0 1],晶圓切口方向為[1 1 0]。在矽晶圓上蝕刻高度為250μm、長度為2cm,寬度各為5μm,10μm,50μm,100μm並且上下兩面及側邊均鍍金的波導管。在光子能量為8878eV時,利用矽(113)原子面產生表面的繞射光,其繞射光沿著表面方向,即[1 1 0]方向(即波導管方向)行進並在出口處2θ方向上作強度的掃瞄,以分析X光在波導管內干涉現象。我們發現當光子能量在8878eV上下350eV的範圍內,2θ掃瞄均出現干涉圖形。
    在理論分析上,我們利用動力繞射理論及直角座標動力繞射算法,得到在隨入射波導管的入射光能量增大時,波導管的干涉條紋越明顯且中央亮紋與第一亮紋的比值也越來越小,此與實驗一致。其物理機制主要來自於金-矽-金(Au-Si-Au)波導管中,基本上(113)的繞射是由兩個模組(mode)的波所形成,而此二波的作用造成實驗上所觀測到的干涉條紋。此外,光子能量可調整的範圍 8878 ± 350 eV。


    The research of this thesis is an investigation of interference effects in wide-angle incident X-ray waveguides. Usually, the conventional waveguides make an incident X-ray beam couple into a waveguide from the side or the front of a waveguide at grazing or normal incident condition. However, this incident geometry cannot be applied to cases involving a large-angle incident X-ray beam. For solving this problem, here we propose to use a surface diffraction beam of (113) reflection to guide X-rays at wide-angle incidence. Using the micro-electronic lithographic process , we etched a 4-inch [001] silicon wafer with a stripe structure along [110]. Each stripe was 250μm in height, 2cm in length, and the width varying from 5μm to 100μm. The etched wafer was then plated with gold by thermal evaporation to about 300nm in thickness on the top and bottom sides of the crystal. The stripe surrounded by gold films acted as an X-ray waveguide. In the diffraction experiment, we guided the 8878eV photons at the incident angle of 50.48 deg. into the waveguide via the (113) surface reflection. The surface diffracted (113) beam then propagated in the [110] direction. Subsequently, 2θscans of the (113) at the exit of waveguide were performed and X-ray interference fringes coming from the waveguide were detected for the photon energies ranging 8878eV ± 350eV.
    For theoretical analysis, we used the dynamical theory of X-ray diffraction in a Cartesian coordinate system to calculate mode of wave-propagation, wavevectors, wavefield amplitudes, and intensities. We found that when the photon energy increased, the intensity ratio between the zeroth-order maximum (the central bright band) and the first-order maximum decreased and the interference effect became more pronounced. This result was qualitatively in good agreement with the experiment. The physical mechanism is that in this Au-Si-Au sandwich waveguide structure the diffraction beam of (113) consists of two modes of wave-propagation dominant in the waveguide and the interaction of the two modes gives the interference patterns observed in the experiment. Moreover, the tunable photon energy range of this kind X-ray waveguides is 8878eV ± 350eV.

    摘要Ⅰ 英文摘要 Ⅱ 致謝 Ⅲ 目錄 Ⅳ 圖表目錄 Ⅵ 表格目錄 Ⅷ 第一章 簡介 1 第二章 實驗的理論基礎 2 2.1布拉格定律 2 2.2動力繞射理論 2 2.2.1 基本波場方程式 3 2.2.2 直角座標動力繞射算法 7 2.2.3 晶體內的電場及波向量 9 第三章 廣角入射波導管導論 11 3.1廣角X光入射波導管的繞射幾何 11 3.2實驗樣品 13 3.3繞射儀 14 3.4實驗步驟 15 第四章 理論及實驗數據分析 17 4.1理論模擬程式 17 4.2 理論計算及實驗數據分析 22 4.2.1理論計算 22 4.2.2 實驗數據分析 24 4.2.3實驗與理論比較 25 4.2.3.a 當波導管入射光能量等於或大於8878eV 25 4.2.3.b 實驗與理論分析討論 33 4.2.3.c 當波導管入射光能量小於8878eV 38 第五章 結論 40 附錄A總電場在Z(2θ)方向上的強度分佈 41 附錄B 模組間的夾角角度差 44 附錄C X光動力繞射計算程式 45 附錄D X光動力繞射計算程式的輸入檔案 60 附錄E 輸入檔案(MultilayRP.in)的座標修正 62 參考文獻 63

    [1] Tipler, P. A. & Llewellyn,R. A. ,Modern Physics , New York : Freeman
    [2] Kittel, C. , (1997). Introduction to Solid State Physics , New York : Wiley
    [3] Chang, S.-L. (2004). X-Ray Multiple-Wave Diffraction Theory and Application
    P 72 , P 89-90 , Berlin :Springer Verlag
    [4] Stetsko, Y. P. & Chang, S.-L. (1997). Acta Cryst. A53, 28-34
    [5] Souvorov, A. , Ishikawa,T. , Nikulin, A. Y. , Stetsko, Y. P. , Chang, S.-L. & Zaumseil, P. (2004). Phys .Rev. B 70, 224109
    [6] Prudnikov, I. R. (2003). Phys. Rev. B 67 , 233303
    [7] Ashcroft, N. W. , Mermin, N. D. ,(1976). Solid State Physics , Saunders College
    [8] Hecht, E. (1990). Optics , San Francisco : Addison-Wesley
    [9] Zwanenburg, M. J. , Bongaerts, J. H. H. , de Vries, S. A. Abernathy, D. L. & van der Veen, J. F. (1999). Phys. Rev. Lett. 89 , 8
    [10] Bukreeva, I. , Popov, A. , Pelliccia, D. , Cedola, A. , Davagov, S. B. &
    Lagomarsino, S. (2006). Phys. Rev. Lett. 97 , 184801
    [11] Gupta, A. , Rajput, P. , Saraiya, A. , Reddy, V. R. , Gupta, M. , Bernstorff, S. &
    Amenitsch, H. (2005). Phys. Rev. B 72 , 075436
    [12] Jackson, J. D. (1999). Classical Electrodynamics , N. J. : Wiley

    [13] Pferffer, F. , Salditt, T. , Hoghoj, P. , Anderson, I. & Schell, N. (2000). Phys .Rev.
    B 62 , 16939-16943
    [14] 武柏瑋 , 廣角入射X光波導管之垂直波導效應以及多片X光共振腔之研究(2006). 國立清華大學碩士論文
    [15] 沈裕琪 , 大分子單晶相位擴展與廣角入射波導管之研究 (2007). 國立清華大學博士論文
    [16] 蔡一葦 , β - FeSi2 / Si 量子點應變場之X 光繞射研究 (2007). P11-12 , 國立清華大學碩士論文

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE