研究生: |
蕭丞澤 Hsiao, Cheng-Tse |
---|---|
論文名稱: |
背面利用由氯化鋁溶液形成氧化鋁鈍化層與局部接觸結構矽晶太陽能電池之研究 Using AlCl3 Solution to Form Al2O3 Passivation Layer on Rear Side of Multicrystalline Silicon Solar Cell |
指導教授: |
王立康
Wang, Li-Karn |
口試委員: |
甘炯耀
Gan, Jon-Yiew 陳昇暉 Chen, Sheng-Hui |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2020 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 矽晶太陽能電池 、氯化鋁 、氧化鋁 |
外文關鍵詞: | multicrystalline silicon solar cell, aluminum chloride, aluminum oxide |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近些年為了提升矽晶太陽能電池的效率,以PERC(Passivated Emitter and Rear Cell)架構的太陽能電池成為主流。製作PERC太陽能電池的製程中,背表面鈍化是必要的步驟。在本實驗中我們使用氧化鋁薄膜作為其鈍化層,氧化鋁薄膜使用濕式製程製作來降低成本。
本篇利用P型矽基板製作太陽能電池。首先,我們基板是經過磷擴散的p-n片,使用氯化鋁溶液塗佈在基板背面以形成氧化鋁薄膜作為鈍化層。為了探討背面鈍化效果我們量測經塗佈溶液後的裸片與商業藍片(後者的p-n片前表面上有沉積抗反射層)少數載子壽命。找出最佳的溶液濃度、退火溫度與退火時間。為了探討退火後之氧化鋁薄膜的材料特性,使用XPS、TEM來量測其成分與厚度。使用最佳的退火時間20分鐘且在退火溫度為450℃進行退火行成鈍化層。在退火後,我們在氧化鋁層上沉積一層氮化矽做為保護層,然後經過黃光製程形成氧化鋁/氮化矽堆疊層開口圖樣。後來,在正面鍍上一層氮化矽作為抗反射層,經過網印、燒結以得出的PERC太陽能電池,其最佳填充因子為75.7%、轉換效率為15.17%,比全面鋁的太陽能電池相比提升了0.64%。
In recent years, in order to improve the efficiency of crystalline silicon solar cells, the solar cells of PERC (Passivated Emitter and Rear Cell) structure have become mainstream. The passivation of the back surfaces of PERC solar cells is a necessary process. In this experiment, we used a Al2O3 film as a passivation layer, and manufactured this film by using a wet chemical process to reduce costs.
In this study, we used p-type silicon wafers to fabricate solar cells. First, the wafers were diffused phosphorus to form p-n junction and then was coated with aluminum chloride solutions on rear sides to make Al2O3 films as passivation layers. To investigate the passivation effect of wet chemically deposited aluminum oxide film on the back surface, we measured the lifetime of minority carriers for both bare wafers and blue wafers(the latter of which refer to the diffused wafer coated with an anti-reflective coating) after coated with aluminum chloride solutions. We have found the best solution concentration, annealing temperature and annealing time period. In order to investigate the material characteristics of Al2O3 after annealing, the elemental composition and the film thickness are measured by XPS and TEM, respectively. The best annealing time period for Al2O3 was 20 minutes at 450℃ to from a passivation layer. After annealing the Al2O3 film, we deposited a SiNx film as a protective layer on the Al2O3 layer, and then used the photolithography process to form the opening pattern of the Al2O3/SiNx stacked layer. Subsequently, a SiNx layer was deposited on the front surface of the cell, followed by screen printing of metal contacts and co-firing. The PERC structure of the solar cell has a fill factor of 75.7% and a conversion efficiency of 15.17%, the latter of which shows an increase of 0.64% compared with the Al-BSF solar cell.
[1]D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power”, Journal of Applied Physics, vol. 25, pp. 676, 1954.
[2]Kknews, “IHS預測:2020年全球預計新增太陽能光伏142GW”, Retrieved from https://kknews.cc/world/565gall.html
[3]R. Jeyakumar, “Copper indium gallium selenide based solar cells review”, Energy and Enviromental Science. Issue 6, 2017.
[4]郭浩中、賴芳儀、郭守義與蔡閔安, “太陽能光電技術”, 五南
[5]NERL Transforming Energy, “Best Research-Cell Efficiency Chart”, Retrieved from https://www.nrel.gov/pv/cell-efficiency.html
[6]S. William, Hans J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells”, J.Appl. Phys., vol.32, pp. 510 519, 1961.
[7]Christiana B. Honsberg, Member, IEEE, Jeffrey E. Cotter, Keith R. McIntosh,Stephen C. Pritchard,Bryce S. Ri chards, and Stuart R. Wenham, “Design strategies for commercial solar using the buried contact technology”, IEEE Transactons on Electron Devices, vol. 46, 1999.
[8]Z. Jianhua, W. Aihua, Martin A. Green, “High-efficiency PERL and PERT silicon solar cells on FZ and MCZ substrates”, Solar Energy Materials and Solar Cells, pp. 429-435, 2001.
[9]T. Makoto, O. Shingo, T. Sadaji, K.Seiichi, “Development of HIT solar cell s with more than 21% conversion efficiency and commercialization of highest performance HIT modules”, 3rd World Conference on Photovoltaic Energy Conversion, 2003.
[10]G. Chun, S. Sukhvinder, R. Jo, P. Niels, K. Emmanuel, P. Jef and M. Robert, “High efficient n type back junction back contact silicon solar cells with screen printed al alloyed emitter and effective emitter passivation study”, Progress in Photovoltaics: Research and Applications, vol 19, pp. 781 786, 2011.
[11]K.-Y. Cho, I.-H. Kim, D.-J. Oh, “Improvements of Voc by selective emitter pattern optimization in screen printed crystalline Si solar cells”, in Photovoltaic Specialists Conference (PVSC), 2010 35th IEEE, 2010, pp. 1335-1338.
[12]Solar Feeds, “Panasonic Achieves 25.6% Solar Cell Efficiency”, Retrieved from https://solarfeeds.com/panasonic-achieves-25-6-solar-cell-efficiency/
[13]G. Sebastian, D. Thorsten, and B. Rolf, “ Evaluation of Series Resistance Losses in Screen-Printed Solar Cells With Local Rear Contacts”, IEEE journal of photovoltaics, vol. 1, no. 1, 2011.
[14]中興物理 孫允武, “半導體概論”, Retrieved from http://ezphysics.nchu.edu.tw/prophys/condmatt/handouts/chap8semicon/semicond.pdf
[15]Chienkuo Technology University, “載子傳輸現象”, Retrieved from http://een.ctu.edu.tw/ezfiles/16/1016/img/833/LED03.ppt
[16]D.E. Carlson, and C.R. Wronski, “Amorphous silicon solar cell”,Cites as: Appl. Phys. Lett. 28, 671(1976).
[17]A.E. Dixon, “Amorphous silicon solar cell”, Energy and the Environment, 1990.
[18]University Cambridge, “optical coating”, Retrieved from https://www.doitpoms.ac.uk/tlplib/atomic-scale-structure/intro.php
[19]華信教育資源網, “面心立方”, Retrieved from http://www.hxedu.com.cn/resPath/simplecharacter/1437715463345.pdf
[20]Slideshare, “Crystal structure”, Retrieved from https://www.slideshare.net/chinkitkit/crystal-structure-52857672
[21]Wikipedia, “Miller index”, Retrieved from https:/en.wikipedia.org/wiki/Optical_coating
[22] K. Helge, “Niels Bohr and the Quantum Atom”, The Bohr Model of Atomic Structure 1913-1925.
[23]國立台灣大學化學系 葉德緯, “Conduction Band”,2016科學online
[24]Tutorialspoint, “Basic Electronics- Energy Bands”, Retrieved from https://www.tutorialspoint.com/basic_electronics/basic_electronics_energy_bands
[25]Hemant Tulsani, “Differentiate between direct and indirect band gap semiconductors” , Retrieved from http://edetec106.blogspot.com/2016/01/differentiate-between-direct-and.html
[26]C. Wei, Q. Dongchen, G. Xingyu, and S.W. Andrew Thye, “Surface transfer doping of semiconductors”, Progress in Surface Science 84 (2009) 279–321
[27]TEP(The Engineering Projects), “Introduction to PN Junction”, Retrieved from https://www.theengineeringprojects.com/2018/05/introduction-to-pn-junction.html
[28]Researchgate, “p-n-junction solar cell”, Retrieved from https://www.researchgate.net/figure/p-n-junction-solar-cell-with-strong-depletion-region_fig3_325334689
[29]陳頤承、郭昭顯與陳俊亨, “太陽電池量測技術”,工業材料雜誌258期
[30]Wikimedia,“Spectrum of Solar Radiation”, Retrieved from https://commons.wikimedia.org/wiki/File:Solar_spectrum_en.svg
[31]Wikimedia, “SunlightSunlight”, Retrieved from https://en.wikipedia.org/wiki/SunlightSunlight
[32]Jung M. Kim and Young K. Kim, “Saw-damage-induced structural defects on the surface of silicon crystals”, Journal of the Electrochemical Society, vol. 152, no. 3, pp. G189-G192, 2005.
[33]B. Hoex, F. J. J. Peeters, M. Creatore, M. A. Blauw, W. M. M. Kessels, and M. C. M. van de Sanden, “High-rate plasma-deposited Si O 2 films for surface passivation of crystalline silicon”, Journal of Vacuum Science & Technology A, vol. 24, no. 5, pp. 1823, 2006.
[34]S. Wim, R. Henk and W. Arthur Weeber,“Bulk and surface passivation of silicon solar cells accomplished by silicon nitride deposited on industrial scale by microwave PECVD”,Progress in Photovoltaics: Research and Applications, vol. 13, no. 7, pp. 551-569, 2005.
[35]W. Sangho, D. Vinh Ai, L. Youngseok, S. Chonghoon, P. Jinjoo, C. Jaehyun, Y.Junsin, “Processed optimization for excellent interface passivation quality of amorphous/crystalline silicon solar cells”, Solar Energy Materials and Solar Cells, vol. 117, pp. 174-177, 2013.
[36]L. Hua, W. Stuart Ross, S. Zhengrong, “High efficiency PERL cells on CZ P-type crystalline silicon using a thermally stable a-Si:H/SiNx rear surface passivation stack”, Solar Energy Materials and Solar Cells, vol. 117, pp. 41-47, 2013.
[37]S. Oliver, M. Ansgar, H.Martin and Stefan W. Glunz, “Thermal oxidation for crystalline silicon solar cells exceeding 19% efficiency applying industrially feasible process technology”, Progress in Photovoltaics: Research and Applications, vol. 16, no. 4, pp. 317-324, 2008.
[38]B. Hoex, S.B.S. Heil, E. Langereis, M.C.M. Van de Sanden and W.M.M. Kessels, “Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3”, Appl. Phys. Lett., pp. 042112, 2006.
[39]J. Benick, B. Hoex, M.C.M. Van de Sanden, W.M.M. Kessels, O. Schultx and S. W. Glunz, “High efficiency n-type Si solar cells on Al2O3-passivated boron emitters”, Appl. Phys. Lett., pp. 253504, 2008.
[40]J. Zhao and Martin A. Green , “Optimized antireflection coatings for high-efficiency silicon solar cells”, IEEE Transactions on Electron Devices, vol. 38, no. 8, pp. 1925-1934,1991.
[41]ResearchGate, “Analysis of the Effect of Fill Factor on the Efficiency of Solar PV System for Improved Design of MPPT”, Retrieved from https://www.researchgate.net/publication/269390463_Analysis_of_the_Effect_of_Fill_Factor_on_the_Efficiency_of_Solar_PV_System_for_Improved_Design_of_MPPT
[42]Stuart D.McDonald, N. Kazuhiro, Arne K.Dahle, “Eutectic nucleation in Al–Si alloys ”, Acta Materialia vol.52, Issue 14, pp.4273–4280, 2004.
[43]K. Bouzidi, M. Chegaar, “Solar cells parameters evaluation considering the series and shunt resistance”, Solar Energy Materials & Solar Cells 91,2007.
[44]N. Shreesh, R. Ajeet , “ An optimized rapid aluminum back surface field technique for silicon solar cells,” IEEE transactions on electron devices,vol.46, NO.7, 1999.
[45]S. W. Park, J. Kim, S. H. Lee, “Application of Acid Texturing to MultiCrystalline Silicon Wafers in Journal of the Korean Physical Society”, Vol.43, No. 3, September 2003, pp. 423–426.
[46]D.H. Neuhaus, A. Munzer, “Industrial Silicon Wafer Solar Cells”, Advancesin OptoElectronics, 2007, Article ID 24521.
[47]A. Hauser, et al., “A simplified process for isotropic texturing of mc-Si”, WCPEC 03, vol. 2, pp. 1447–1450, Osaka, Japan, 2003.
[48]K. Daniel, H. Sybille, S. Akos, R. Bernold, P. Willeke Gerhard,“Study on the edge isolation of industrial silicon solar cells with waterjet-guided laser”, Solar Energy Materials & Solar Cells 91 ,2007.
[49]C. Jia, T.J. Zhi Hao , D. Zhe Ren, L. Fen, H. Bram , and G.Aberle Armin, “Investigation of screen printed rear contacts for aluminum local back surface field silicon wafer solar cells”, IEEE Journal of Photovoltaics , vol. 3, pp. 690 696, 2013.
[50]M.H. Gregory, “Titania-doped tantala/silica coatings for gravitational-wave detection”, Classical and Quantum Gravity, 24, pp.405-415, 2007.
[51]R.A. Sinton, “Quasi-steady-state photoconductance, a new method for solar cell material and device characterization”, PVSC IEEE, 1996.
[52]台灣半導體研究中心, “場發射掃描式電子顯微鏡”, Retrieved from https://www.tsri.org.tw/tech/material/fesem.jsp
[53]台灣半導體研究中心, “晶粒等級圖案定義對準系統”, Retrieved from http://140.110.219.65/docs/devices/CF/L20_A.pdf
[54]NTHU Y.-C. Hung Lab, “UV/VIS光譜儀 Lambda 35”, Retrieved from http://oplab.ipt.nthu.edu.tw/main/node/32
[55]Forter Tech, “Oriel Sol3A Class AAA Solar Simulators ”, Retrieved from http://www.forter.com.tw/products_detail.asp?seq=2289
[56]H.Haibing, L. Jun , B.Yameng, X. Rongwei, S. Shenghua, S. Sami, L. Shuo, M. Chiara, S. Hele, W. Aihua, Z. Jianhua, “20.8% industrial PERC solar cell: ALD Al2O3 rear surface passivation, efficiency loss mechanisms analysis and roadmap to 24%”, Solar Energy Materials and Solar Cells Volume 161, pp.14-30, 2017.
[57]C. Wenhao, L. Renzhong, Z. Qingguo, Z. Lang, “Low cost multicrystalline bifacial PERC solar cells – Fabrication and thermal improvement”, Solar Energy Volume 184, pp. 508-514,2019.
[58]H. Haibing, L. Jun, B.Yameng, X. Rongwei, S. Shenghua, S. Sami, L. Shuo, M. Chiara, S. Hele, W. Aihua, Z. Jianhua, “Data of ALD Al2O3 rear surface passivation, Al2O3 PERC cell performance, and cell efficiency loss mechanisms of Al2O3 PERC cell”, Data in Brief Volume 11, pp.19-26, April 2017.