研究生: |
王聖元 Wang, Sheng-Yuan |
---|---|
論文名稱: |
針對上行鏈路高可靠低延遲服務基於非正交多重存取的使用者分群與排程方法 NOMA-Based User Grouping and Scheduling for Uplink URLLC Services |
指導教授: |
高榮駿
Kao, Jung-Chun |
口試委員: |
趙禧綠
Chao, Hsi-Lu 楊舜仁 Yang, Shun-Ren |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2022 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 61 |
中文關鍵詞: | 高可靠低延遲 、配置授權 、無競爭 、非正交多重存取 、連續干擾消除 、資源分配 、資源排程 |
外文關鍵詞: | URLLC, Configured-grant, Contention-free, NOMA, SIC, Resource allocation, Resource scheduling |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
高可靠低延遲傳輸 (URLLC) 是由第五代 (5G) 行動通訊網路新無線技術 (NR) 提出的一種有展望的服務。為了在滿足 URLLC 場景下嚴格要求的同時,增強行動網路的表現,這篇論文提出了一種基於非正交多重存取 (NOMA) 的資源配置方式。在上行方向 (UL) 無競爭 (contention-free) 配置授權 (configuredgrant) 傳輸的系統中,使用者無須再花向基地台請求資源 (scheduling request) 的排程時間,以及競爭資源造成傳輸失敗的可能性,且我們假設基地台 (BS) 利用連續干擾消除 (SIC) 的機制來解出訊號,確保傳輸的高可靠度。這篇論文中提出兩個階段:使用者分組機制以及組別排程機制。使用者分組機制的目的是想要在使用相同的無線時頻資源下,服務最大量的使用者。換句話說,要讓所有使用者都能被服務的情況下,使用最少量的無線時頻資源。在發揮最大資源共享效益的同時,我們也顧及到每位使用者的服務品質 (QoS) 。組別排程機制的目標是想要最小化使用者等待資源的時間,也就是盡可能地去縮短當任一位使用者出現傳輸的需求,到它能取得資源的這一段時間。模擬結果展現出我們的機制在滿足 URLLC 要求的使用者數量比現存方法多出不少,在等待時間方面也比較出色,相對在資源使用量以及系統容量的表現也只有稍稍損失甚至持平。
Ultra-reliable low-latency communications (URLLC) is one of the envisioned services offered by fifth generation (5G) mobile network new radio (NR). We propose a non-orthogonal multiple access (NOMA)-based resource allocation method to enhance performance of mobile networks while still satisfying the stringent requirements of URLLC scenario in the uplink direction (UL). We assume signal is decoded by the successive interference cancellation (SIC) technique and then we focus on contention-free configured-grant NOMA-based transmission. NOMA allows more than one users to share a resource unit simultaneously, improving throughput and spectrum efficiency of overall networks compared with orthogonal multiple access (OMA). Our method consists of two parts: user grouping and group scheduling. The goal of user grouping is to maximize the number of users that can share the same resource unit and satisfy their quality of service (QoS) simultaneously. The aim of grouping scheduling is to schedule groups in an efficient way such that the response time of every user is minimized. Simulation results show that our method outperforms the existing methods in terms of reliability and latency.
Reference
[1] J. Sachs, G. Wikstrom, T. Dudda, R. Baldemair, and K. Kittichokechai, “5g radio network design for ultra-reliable low-latency communication,” IEEE Network, vol. 32, no. 2, pp. 24–31, 2018. doi: 10.1109/MNET.2018.1700232.
[2] C. She, C. Yang, and T. Q. Quek, “Radio resource management for ultrareliable and low-latency communications,” IEEE Communications Magazine, vol. 55, no. 6, pp. 72–78, 2017.
[3] H. Ji, S. Park, J. Yeo, Y. Kim, J. Lee, and B. Shim, “Ultra-reliable and low-latency communications in 5g downlink: Physical layer aspects,” IEEE Wireless Communications, vol. 25, no. 3, pp. 124–130, 2018.
[4] M. Centenaro, D. Laselva, J. Steiner, K. Pedersen, and P. Mogensen, “Systemlevel study of data duplication enhancements for 5g downlink urllc,” IEEE Access, vol. 8, pp. 565–578, 2019.
[5] A. A. Esswie and K. I. Pedersen, “Null space based preemptive scheduling for joint urllc and embb traffic in 5g networks,” in 2018 IEEE Globecom Workshops (GC Wkshps), IEEE, 2018, pp. 1–6.
[6] A. A. Esswie and K. I. Pedersen, “Opportunistic spatial preemptive scheduling for urllc and embb coexistence in multi-user 5g networks,” Ieee Access, vol. 6, pp. 38 451–38 463, 2018.
[7] A. Anand, G. De Veciana, and S. Shakkottai, “Joint scheduling of urllc and embb traffic in 5g wireless networks,” IEEE/ACM Transactions on Networking, vol. 28, no. 2, pp. 477–490, 2020.
[8] ITU-R, “Minimum requirements related to technical performance for IMT-2020 radio interface(s),” Radiocommunication Sector of ITU, Tech. Rep.M.2410-0, Nov. 2017.
[9] 3GPP, “Study on Scenarios and Requirements for Next Generation Access Technologies,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 38.913, Jul. 2020, Version 16.0.0.
[10] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 36.300, Mar. 2021, Version 16.5.0.
[11] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 36.213, Mar. 2021, Version 16.5.0.
[12] 3GPP, “NR; Physical layer procedures for data,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.214, Mar. 2020, Version 16.1.0.
[13] S. P. Erik Dalhman and J. Skold, 5G NR: the next generation wireless access technology. London: Elsevier, Academic Press, 2021.
[14] C.Wang, Y. Chen, Y.Wu, and L. Zhang, “Performance Evaluation of Grant-Free Transmission for Uplink URLLC Services,” in IEEE Vehicular Technology Conference (VTC-Spring), Sydney, NSW, Australia, Jun. 2017. doi: 10.1109/VTCSpring.2017.8108593.
[15] T. Jacobsen, R. Abreu, G. Berardinelli, et al., “System Level Analysis of Uplink Grant-Free Transmission for URLLC,” in IEEE Globecom Workshops (GC Wkshps), Singapore, Dec. 2017. doi: 10.1109/GLOCOMW.2017.8269137.
[16] Nokia, Alcatel-Lucent Shanghai Bell, “Discussion on HARQ support for URLLC,” 3rd Generation Partnership Project (3GPP), document R1-1612246, Nov. 2016, TSG-RAN WG1 Meeting #87.
[17] T. N.Weerasinghe, I. A. M. Balapuwaduge, and F. Y. Li, “Supervised Learning based Arrival Prediction and Dynamic Preamble Allocation for Bursty Traffic,” in IEEE Conference on Computer Communications Workshops (INFOCOM Wkshps), Paris, France, Apr. 2019.
[18] T. N. Weerasinghe, I. A. Balapuwaduge, and F. Y. Li, “Priority-based initial access for URLLC traffic in massive IoT networks: Schemes and performance analysis,” Computer Networks, vol. 178, p. 107 360, Sep. 2020, issn: 1389-1286. doi: https://doi.org/10.1016/j.comnet.2020.107360. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1389128619317967.
[19] C.-H. Wei, G. Bianchi, and R.-G. Cheng, “Modeling and analysis of random access channels with bursty arrivals in ofdma wireless networks,” IEEE transactions on wireless communications, vol. 14, no. 4, pp. 1940–1953, Dec. 2015. doi: 10.1109/TWC.2014.2377121.
[20] N. H. Mahmood, R. Abreu, R. B¨ohnke, M. Schubert, G. Berardinelli, and T. H. Jacobsen, “Uplink Grant-Free Access Solutions for URLLC services in 5G New Radio,” in International Symposium on Wireless Communication Systems (ISWCS), Oulu, Finland, Aug. 2019, pp. 607–612. doi: 10.1109/ISWCS.2019.8877253.
[21] M. B. Shahab, R. Abbas, M. Shirvanimoghaddam, and S. J. Johnson, “Grantfree non-orthogonal multiple access for iot: A survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 3, pp. 1805–1838, May 2020. doi: 10.1109/COMST.2020.2996032.
[22] J. Ding, M. Nemati, S. R. Pokhrel, O.-S. Park, J. Choi, and F. Adachi, “Enabling grant-free urllc: An overview of principle and enhancements by massive mimo,” IEEE Internet of Things Journal, 2021.
[23] H.-H. Su, “Contention-free configured-grant scheduling for uplink urllc services in mu-mimo systems,” M.S. thesis, National Tsing Hua University, Jul. 2021.
[24] N. I. Jaya and M. F. Hossain, “Ran resource slicing and sharing with noma for latency reduction in uplink urllc networks,” in 2020 IEEE Wireless Communications and Networking Conference Workshops (WCNCW), IEEE, 2020, pp. 1–6.
[25] 3GPP, “Physical channels and modulation,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 36.211, Sep. 2020, Version 16.3.0.
[26] 3GPP, “NR; Physical channels and modulation,” 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 38.211, Sep. 2020, Version 16.3.0.
[27] A. Kumar, D. Manjunath, and J. Kuri, Wireless networking. Burlington, Massachusetts: Elsevier, 2008.
[28] J. Fan, Q. Yin, G. Y. Li, B. Peng, and X. Zhu, “Mcs selection for throughput improvement in downlink lte systems,” in 2011 Proceedings of 20th international conference on computer communications and networks (ICCCN), IEEE, 2011, pp. 1–5.
[29] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms and complexity. Mineola, New York: Courier Corporation, 1998.
[30] ITU-R, “Guidelines for evaluation of radio interface technologies for IMT-2020,” Radiocommunication Sector of ITU, Tech. Rep. M.2412-0, Nov. 2017.
[31] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Frequency (RF) requirements for LTE Pico Node B,” 3rd Generation Partnership Project (3GPP), Technical Report (TR) 36.931, Dec. 2009, Version 9.0.0.
[32] S. E. Elayoubi, P. Brown, M. Deghel, and A. Galindo-Serrano, “Radio resource allocation and retransmission schemes for urllc over 5g networks,” IEEE Journal on Selected Areas in Communications, vol. 37, no. 4, pp. 896–904, Feb. 2019. doi: 10.1109/JSAC.2019.2898783.
[33] N. Karmarkar, “A new polynomial-time algorithm for linear programming,” in Proceedings of the sixteenth annual ACM symposium on Theory of computing, 1984, pp. 302–311.