研究生: |
日山 Kiran Kishore Kesavan |
---|---|
論文名稱: |
應用於第二代和第三代發光材料之濕式有機發光二極體之複合激子 Universal Exciplex Host for Gen-2 and Gen-3 Emitters in Wet-processed Organic Light Emitting Diodes |
指導教授: |
周卓煇
Jou, Jwo-Huei |
口試委員: |
岑尚仁
Chen, Sun-Zen 魏茂國 Wei, Mao-Kuo 王欽戊 Wang, Ching-Wu 蔡永誠 Tsai, York |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2022 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 162 |
中文關鍵詞: | 5 、反向系統間交叉 (RISC) 、多功能主機 、三線態激子 、激基複合物長時間發射 、瞬態光致發光 |
外文關鍵詞: | 5, Reverse intersystem crossing (RISC), Versatile host, Triplet excitons Exciplex, Prolonged emission, Transient photoluminescence |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
OLED顯示器已成為顯示器技術中無可否認的最佳選擇,其技術在可製造性、性能、色彩質量和良率方面均不斷取得進步,強調此技術在遙遠未來的可靠性。此外,OLED的多面向發展,如透明和柔性產品,為顯示技術的發展樹立了標竿。
在過去的二十年裡,調整 OLED 元件結構的能力促進了元件的性能和特性。此外,使用高性能的第 2 代(磷光)和第 3 代(熱激化延遲螢光-TADF)發光體提高了性能,但由於難以收集傳統主體(單極和雙極主體)所產生的所有單重態和三重態激子,其性能受到限制。近年來,與傳統的主體不同,複合激子(Exciplex)主體由於可充分利用單重態和三重態激子而受到關注。複合激子是由物理混合施體以及受體分子製造而成,這讓調整以下參數提供了可行性,例如:1.調整單重態-三重態能量差(EST),2.電荷平衡3. 發射峰位置進而可以有效地提升主體之單重態和三重態激子的產生,並且可以有效地利用。
在第一部分中,具有所需特徵的最佳複合激子之組合必須通過一系列文獻調查和實驗分析確定。高效能之複合激子材料是由咔唑基施體材料 (BCC-36)以及三嗪基受體材料 (PO-T2T) 組合製作。此複合激子OLED(BCC-36:PO-T2T)是使用溶液處理為製程製造,其主體作為發光體。在沒有使用外部發光體下測量元件結果達到了90%的光致發光量子產率(PLQY)最高外部量子效益(EQE)為20%以及電流效率41cd/A
在第二部分中,研究了本系統作為常規 Gen-1 螢光 (C545T)、Gen-2 磷光 (Ir(ppy)2(acac)) 和 Gen-3 TADF (4CzIPN) 發光體的主體,其濃度將單獨優化以實現最大性能。在最佳溶液處理之條件下,相應的摻雜元件系統表現出最高的外部量子效益,分別為 12.5%(螢光)、30.6%(磷光)和 26.5%(TADF)。元件優異的性能歸功於擁有較高的光致發光量子產率(PLQY), 出色的受激複合產率和降低的非輻射衰減因子(knrT)。由於複合激子主體和發光體之間擁有足夠的能量差,其電荷傳輸也會較佳。本元件之結構也較簡單,可以減少厚度以及避免光子阱。
OLED displays have emerged as an undeniably superior choice in display technology. OLED technology continuously demonstrates advancements in manufacturability, performance, color quality, and yield, emphasizing its reliability for the distant future. Furthermore, the versatile development of OLED, such as transparent and flexible products, established a benchmark in display evolution.
Over the last two decades, the ability to tune the OLED device structure has accelerated performance and characteristics. Further, using high-performing Gen-2 (Phosphorescent) and Gen-3 (Thermally Activated Delayed Fluorescent-TADF) emitters has improved performance, but the device's performance are restricted due to challenges in harvesting all the singlet and triplet excitons generated by the traditional host (unipolar and bipolar host). In recent year, exciplex host system is gaining attention owing of utilizing both singlet and triplet excitons unlike conventional host systems. Exciplex are formed by physically blending the donor and acceptor molecules, which provides the feasibility in tailoring the parameters such as (i) tuning the singlet-triplet energy difference (EST), (ii) charge balance, (iii) emission peak position, by which exciton generation can be effectively improved and both singlet and triplet generated excitons of the host can be utilized efficiently.
In the first section, the optimal exciplex combination with the required features is identified through a series of literature survey and experimental analyses. A highly efficient exciplex is formed by combination of carbazole based donor material (BCC-36) with triazine based acceptor material (PO-T2T). Pure exciplex (BCC-36:PO-T2T) OLEDs were fabricated using a solution-processed approach in which the exciplex host serves as an emitter. As a result, a photoluminescence quantum yield (PLQY) of 90% with pure exciplex emission was achieved, as well as high device performance with a maximum EQE of 20% and a current efficacy of 41 cd A-1 is solely achieved without using any external emitter.
In the second section, the exciplex system was studied as a host for conventional Gen-1 fluorescent (C545T), Gen-2 phosphorescent (Ir(ppy)2(acac)), and Gen-3 TADF (4CzIPN) emitters. Emitter concentration were individually optomised to achieve the maximum performance. Under optimum solution-processed device conditions, the corresponding doped device system demonstrated a highest EQE of 12.5% (fluorescent), 30.6% (phosphorescent), and 26.5% (TADF). Excellent device performance attribute to the high exciplex host PLQY, outstanding exciplex yield with decreased non-radiative decay (knrT) factor, an adequate energy difference between exciplex host and emitter, superior charge transportability, and simple device structure with reduced thickness for avoiding photon trap.
Reference
[1] C.W. Tang, S.A. Vanslyke, Organic electroluminescent diodes, Applied Physics Letters. 51 (1987) 913–915. https://doi.org/10.1063/1.98799.
[2] K.R. Sarma, Recent advances in AM OLED technologies for application to aerospace and military systems, Head- and Helmet-Mounted Displays XVII; and Display Technologies and Applications for Defense, Security, and Avionics VI. 8383 (2012) 83830P. https://doi.org/10.1117/12.921202.
[3] E.L. Hsiang, Z. Yang, Q. Yang, Y.F. Lan, S.T. Wu, Prospects and challenges of mini-LED, OLED, and micro-LED displays, Journal of the Society for Information Display. 29 (2021) 446–465. https://doi.org/10.1002/jsid.1058.
[4] Y. Xiang, S. Wu, SS2-1 Automotive Display Market Outlook, 2019 26th International Workshop on Active-Matrix Flatpanel Displays and Devices (AM-FPD). 26th (2021) 1–3.
[5] L. Liu, X. Feng, Z. Zheng, S. Zhang, H. Geng, J. Zheng, V iew Angle Characteristics of LCD / OLED / miniLED / microLED Panels †, 52 (2021) 364–367.
[6] T. Tsujimura, W. Zhu, S. Mizukoshi, N. Mori, K. Miwa, S. Ono, Y. Maekawa, K. Kawabe, M. Kohno, 8.1: Invited Paper : Advancements and Outlook of High Performance Active-Matrix OLED Displays , SID Symposium Digest of Technical Papers. 38 (2007) 84–88. https://doi.org/10.1889/1.2785232.
[7] W.J. Joo, J. Kyoung, M. Esfandyarpour, S.H. Lee, H. Koo, S. Song, Y.N. Kwon, S. Ho Song, J.C. Bae, A. Jo, M.J. Kwon, S.H. Han, S.H. Kim, S. Hwang, M.L. Brongersma, Metasurface-driven OLED displays beyond 10,000 pixels per inch, Science. 370 (2020) 459–463. https://doi.org/10.1126/science.abc8530.
[8] K. Ahmed, Heuristics of oled and micro led efficiencies, Digest of Technical Papers - SID International Symposium. 52 (2021) 864–867. https://doi.org/10.1002/sdtp.14821.
[9] H. Jia, Who will win the future of display technologies?, National Science Review. 5 (2018) 427–431. https://doi.org/10.1093/nsr/nwy050.
[10] D.Q.G.L. V, R. Tangirala, E. Lee, C. Hotz, Y. Kunai, Y. Komatsu, Y. Harada, M. Komada, M. Tokuda, T. Fukuura, J. Ru, U.H.G. Dw, W.K.H. Wdujhw, G.R.W. Edvhg, G. V Ihdwxulqj, S. Vxesl, H.O. V Ri, U.H.G. Ru, &roru &rqyhuvlrq 8vlqj 4xdqwxp “rwv iru /&” 2/(' dqg 0lfur/(' ’lvsod\v , (2020) 1299–1302.
[11] H.J. Jang, J.Y. Lee, G.W. Baek, J. Kwak, J.H. Park, Progress in the development of the display performance of AR, VR, QLED and OLED devices in recent years, Journal of Information Display. 23 (2022) 1–17. https://doi.org/10.1080/15980316.2022.2035835.
[12] LG Transparent OLED Signage., (2022). https://www.lg-informationdisplay.com/oled-signage/brand.
[13] LG Introduces Transparent OLED Displays For Conference Rooms, Commercial Facilities, (2021). https://www.commercialintegrator.com/av/video/displays/lg-introduces-transparent-oled-displays-for-conference-rooms-commercial-facilities/.
[14] Samsung reveals Galaxy Z Fold4, Flip4 launch offers ahead of global debut, (2022). https://www.deccanherald.com/business/technology/samsung-reveals-galaxy-z-fold4-flip4-launch-offers-ahead-of-global-debut-1131963.html.
[15] R. Mertens, Samsung Display shows new rollable and foldable OLED technologies at SID DIsplayweek 2021, (2021). https://www.oled-info.com/samsung-display-unveiles.
[16] Foldable Smartphone Market Expected to Surge: 100 Million Units of Foldable OLED Demand Forecasted in 2028, (2021). http://global.samsungdisplay.com/28924/.
[17] L. Zyga, OLED Tunes its Colors for Sunlight-Style Illumination, 2009-07-16. (2009) 1–2. https://phys.org/news/2009-07-oled-tunes-sunlight-style-illumination.html.
[18] J.-H. Jou, C.-Y. Hsieh, P.-W. Chen, S. Kumar, J.H. Hong, Candlelight style organic light-emitting diode: a plausibly human-friendly safe night light, Journal of Photonics for Energy. 4 (2014) 043598. https://doi.org/10.1117/1.jpe.4.043598.
[19] J.-H. Jou, Sunlight-style organic light-emitting diodes, Journal of Photonics for Energy. 1 (2011) 011021. https://doi.org/10.1117/1.3583640.
[20] J.H. Jou, S. Kumar, H.H. Yu, K.Y. Chou, C.Y. Hsieh, C.F. Sung, Enabling a blue hazard free general lighting based on candlelight-style OLED, Solid-State and Organic Lighting, SOLED 2014. (2014). https://doi.org/10.1364/soled.2014.dw4d.4.
[21] Candlelight OLED now commercialized Marching into the 4 trillion NTD lighting market, (2018). https://www.oled-a.org/pr-candlelight-oled-2018.html.
[22] Two new OLED+ models added to the Philips 2022 Ambilight TV range, (2022). https://www.tpvision.com/blog/two-new-oled-models-added-to-the-philips-2022-ambilight-tv-range/.
[23] About the Super Retina display and Super Retina XDR display on your iPhone, (2021). https://support.apple.com/en-us/HT208191.
[24] LG OLED Products, (2022). https://www.lg.com/us/oled-tvs.
[25] R. Mertens, RAPT develops unique touch solutions for OLED monitors and signage displays, (2022). https://www.oled-info.com/rapt-develops-unique-touch-solutions-oled-monitors-and-signage-displays.
[26] R. Mertens, The Elec: Samsung Display is developing foldable OLEDs for Google, Xiaomi and Oppo, (2022). https://www.oled-info.com/elec-samsung-display-developing-foldable-oleds-google-xiaomi-and-oppo.
[27] OLED 3.5K Laptop Computers & 2-in-1 PC, (2022). https://www.dell.com/en-us/shop/dell-laptops/sr/laptops/oled-35k?appliedRefinements=37775.
[28] Hitachi OLED Television, (2022). https://tv.hitachi.eu/ib-en/oled.
[29] R. Larsen, Hitachi launches Q-series of 43-65" 4K Android TVs in Europe, (2021). https://www.flatpanelshd.com/news.php?subaction=showfull&id=1627282905.
[30] y R. Mertens, Panasonic LZ1000 / LZ1500, (2022). https://www.oled-info.com/panasonic-lz1000-lz1500.
[31] Panasonic 4K OLED Ultra HD Television, (2022). https://www.panasonic.com/uk/consumer/televisions/4K-OLED-TV.html?browsing=params&sort=Featured&filter_100=100&filter_100_rangeName=U2l6ZSAoaW5jaCk&filter_100_rangeSelectedMin=42&filter_100_rangeValueMin=42&filter_100_rangeSelectedMax=77&filter_100_rangeV.
[32] HP OLED Laptops, (2022). https://www.hp.com/gb-en/shop/list.aspx?fc_feat_oled=1&sel=NTB.
[33] Y. Zhang, S.R. Forrest, Triplets contribute to both an increase and loss in fluorescent yield in organic light emitting diodes, Physical Review Letters. 108 (2012) 1–5. https://doi.org/10.1103/PhysRevLett.108.267404.
[34] M.A. Baldo, D.F.O. an dY. You, A. Shoustikov, S. Sibley, M.E. Thompson, S.R. Forrest, Highly efficient phosphorescent emission from organic electroluminescent devices, Nature. 395 (1998) 151. https://www.nature.com/articles/25954.pdf.
[35] Q. Wei, N. Fei, A. Islam, T. Lei, L. Hong, R. Peng, X. Fan, L. Chen, P. Gao, Z. Ge, Small-Molecule Emitters with High Quantum Efficiency: Mechanisms, Structures, and Applications in OLED Devices, Advanced Optical Materials. 6 (2018) 1–31. https://doi.org/10.1002/adom.201800512.
[36] R. Furue, K. Matsuo, Y. Ashikari, H. Ooka, N. Amanokura, T. Yasuda, Highly Efficient Red–Orange Delayed Fluorescence Emitters Based on Strong π-Accepting Dibenzophenazine and Dibenzoquinoxaline Cores: toward a Rational Pure-Red OLED Design, Advanced Optical Materials. 6 (2018) 1–9. https://doi.org/10.1002/adom.201701147.
[37] J. Chen, W. Tao, W. Chen, Y. Xiao, K. Wang, C. Cao, J. Yu, S. Li, F. Geng, C. Adachi, C. Lee, X. Zhang, Red/Near‐Infrared Thermally Activated Delayed Fluorescence OLEDs with Near 100 % Internal Quantum Efficiency, Angewandte Chemie. 131 (2019) 14802–14807. https://doi.org/10.1002/ange.201906575.
[38] M.A. Baldo, S. Lamansky, P.E. Burrows, M.E. Thompson, S.R. Forrest, Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Applied Physics Letters. 75 (1999) 4–6. https://doi.org/10.1063/1.124258.
[39] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Highly efficient organic light-emitting diodes from delayed fluorescence, Nature. 492 (2012) 234–238. https://doi.org/10.1038/nature11687.
[40] J.W. Sun, J.H. Lee, C.K. Moon, K.H. Kim, H. Shin, J.J. Kim, A fluorescent organic light-emitting diode with 30% external quantum efficiency, Advanced Materials. 26 (2014) 5684–5688. https://doi.org/10.1002/adma.201401407.
[41] Y. Seino, S. Inomata, H. Sasabe, Y.J. Pu, J. Kido, High-Performance Green OLEDs Using Thermally Activated Delayed Fluorescence with a Power Efficiency of over 100 lm W-1, Advanced Materials. 28 (2016) 2638–2643. https://doi.org/10.1002/adma.201503782.
[42] B.S. Kim, J.Y. Lee, Engineering of mixed host for high external quantum efficiency above 25% in green thermally activated delayed fluorescence device, Advanced Functional Materials. 24 (2014) 3970–3977. https://doi.org/10.1002/adfm.201303730.
[43] X.K. Liu, Z. Chen, C.J. Zheng, M. Chen, W. Liu, X.H. Zhang, C.S. Lee, Nearly 100% triplet harvesting in conventional fluorescent dopant-based organic light-emitting devices through energy transfer from exciplex, Advanced Materials. 27 (2015) 2025–2030. https://doi.org/10.1002/adma.201500013.
[44] Y. Wada, K. Shizu, S. Kubo, T. Fukushima, T. Miwa, H. Tanaka, C. Adachi, H. Kaji, Highly effi cient solution-processed host-free organic light-emitting diodes showing an external quantum effi ciency of nearly 18% with a thermally activated delayed fl uorescence emitter, Applied Physics Express. 9 (2016). https://doi.org/10.7567/APEX.9.032102.
[45] Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, C. Adachi, Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence, Nature Photonics. 8 (2014) 326–332. https://doi.org/10.1038/nphoton.2014.12.
[46] K.H. Kim, S.J. Yoo, J.J. Kim, Boosting Triplet Harvest by Reducing Nonradiative Transition of Exciplex toward Fluorescent Organic Light-Emitting Diodes with 100% Internal Quantum Efficiency, Chemistry of Materials. 28 (2016) 1936–1941. https://doi.org/10.1021/acs.chemmater.6b00478.
[47] Y.S. Park, K.H. Kim, J.J. Kim, Efficient triplet harvesting by fluorescent molecules through exciplexes for high efficiency organic light-emitting diodes, Applied Physics Letters. 102 (2013) 1–6. https://doi.org/10.1063/1.4802716.
[48] T.H. Park, W. Ren, H.J. Lee, N. Kim, K.R. Son, A. Rani, T.G. Kim, Efficient TADF-based blue OLEDs with 100% stretchability using titanium particle-embedded indium zinc oxide mesh electrodes, NPG Asia Materials. 14 (2022). https://doi.org/10.1038/s41427-022-00411-6.
[49] F.B. Dias, K.N. Bourdakos, V. Jankus, K.C. Moss, K.T. Kamtekar, V. Bhalla, J. Santos, M.R. Bryce, A.P. Monkman, Triplet harvesting with 100% efficiency by way of thermally activated delayed fluorescence in charge transfer OLED emitters, Advanced Materials. 25 (2013) 3707–3714. https://doi.org/10.1002/adma.201300753.
[50] Y. Li, Z. Li, J. Zhang, C. Han, C. Duan, H. Xu, Manipulating Complementarity of Binary White Thermally Activated Delayed Fluorescence Systems for 100% Exciton Harvesting in OLEDs, Advanced Functional Materials. 31 (2021) 1–9. https://doi.org/10.1002/adfm.202011169.
[51] V. Jankus, P. Data, D. Graves, C. McGuinness, J. Santos, M.R. Bryce, F.B. Dias, A.P. Monkman, Highly efficient TADF OLEDs: How the emitter-host interaction controls both the excited state species and electrical properties of the devices to achieve near 100% triplet harvesting and high efficiency, Advanced Functional Materials. 24 (2014) 6178–6186. https://doi.org/10.1002/adfm.201400948.
[52] H. Fukagawa, T. Shimizu, H. Kawano, S. Yui, T. Shinnai, A. Iwai, K. Tsuchiya, T. Yamamoto, Novel Hole-Transporting Materials with High Triplet Energy for Highly Efficient and Stable Organic Light-Emitting Diodes, Journal of Physical Chemistry C. 120 (2016) 18748–18755. https://doi.org/10.1021/acs.jpcc.6b05099.
[53] K. Goushi, R. Kwong, J.J. Brown, H. Sasabe, C. Adachi, Triplet exciton confinement and unconfinement by adjacent hole-transport layers, Journal of Applied Physics. 95 (2004) 7798–7802. https://doi.org/10.1063/1.1751232.
[54] H. Zhou, S. Guo, X. Jin, J. Cao, J. Cui, Z. Zhao, J. Huang, J. Su, Novel hole transport materials based on triphenylvinyl substituted triarylamine with excellent thermal stability for green OLEDs, Dyes and Pigments. 195 (2021) 109641. https://doi.org/10.1016/j.dyepig.2021.109641.
[55] M.S. Park, J.Y. Lee, Indolo acridine-based hole-transport materials for phosphorescent OLEDs with over 20% external quantum efficiency in deep blue and green, Chemistry of Materials. 23 (2011) 4338–4343. https://doi.org/10.1021/cm201634w.
[56] K.W. Tsai, M.K. Hung, Y.H. Mao, S.A. Chen, Solution-Processed Thermally Activated Delayed Fluorescent OLED with High EQE as 31% Using High Triplet Energy Crosslinkable Hole Transport Materials, Advanced Functional Materials. 29 (2019) 1–10. https://doi.org/10.1002/adfm.201901025.
[57] S.J. Su, D. Tanaka, Y.J. Li, H. Sasabe, T. Takeda, J. Kido, Novel four-pyridylbenzene-armed biphenyls as electron-transport materials for phosphorescent OLEDs, Organic Letters. 10 (2008) 941–944. https://doi.org/10.1021/ol7030872.
[58] S.J. Su, Y. Takahashi, T. Chiba, T. Takeda, J. Kido, Structure-property relationship of pyridine-containing triphenyl benzene electron-transport materials for highly efficient blue phosphorescent oleds, Advanced Functional Materials. 19 (2009) 1260–1267. https://doi.org/10.1002/adfm.200800809.
[59] A. Lorente, P. Pingel, H. Krüger, S. Janietz, High triplet energy electron transport side-chain polystyrenes containing dimesitylboron and tetraphenylsilane for solution processed OLEDs, Journal of Materials Chemistry C. 5 (2017) 10660–10667. https://doi.org/10.1039/c7tc03029k.
[60] H. Ye, D. Chen, M. Liu, S.J. Su, Y.F. Wang, C.C. Lo, A. Lien, J. Kido, Pyridine-containing electron-transport materials for highly efficient blue phosphorescent OLEDs with ultralow operating voltage and reduced efficiency roll-off, Advanced Functional Materials. 24 (2014) 3268–3275. https://doi.org/10.1002/adfm.201303785.
[61] J. Jayakumar, W.L. Wu, C.L. Chang, T.Y. Han, L.Y. Ting, C.M. Yeh, H.W. Hung, H.H. Chou, Highly thermal stable electron-transporting materials using triptycene derivatives for OLEDs, Organic Electronics. 88 (2021) 106013. https://doi.org/10.1016/j.orgel.2020.106013.
[62] X. Ban, K. Sun, Y. Sun, B. Huang, W. Jiang, Design of high triplet energy electron transporting material for exciplex-type host: Efficient blue and white phosphorescent OLEDs based on solution processing, Organic Electronics. 33 (2016) 9–14. https://doi.org/10.1016/j.orgel.2016.02.041.
[63] E. Ahmed, T. Earmme, S.A. Jenekhe, New solution-processable electron transport materials for highly efficient blue phosphorescent OLEDs, Advanced Functional Materials. 21 (2011) 3889–3899. https://doi.org/10.1002/adfm.201100848.
[64] H. Wei, R. Zhang, G. Huang, C. Lv, J. Tang, Highly stable and efficient tandem white light emitting diodes based on efficient electron injection and transport, Journal of Materials Chemistry C. 10 (2022) 5994–6001. https://doi.org/10.1039/d1tc05687e.
[65] V. Mohan, N. Agrawal, A.K. Gautam, V.M. Kapse, M. Sazid, N.Z. Rizvi, Enabling highly-efficient OLED with solution-processed nanocrystalline copper phthalocyanine hole-injection/transport layer, Semiconductor Science and Technology. 37 (2022). https://doi.org/10.1088/1361-6641/ac6cff.
[66] Jiang S. J., Wan S. M., Luo W., et al., J Materials Chemistry C, J. Mater. Chem. 1 (2020) 3777. https://doi.org/10.1039/D2TC03121C.
[67] J. Zeng, N. Qiu, J. Zhang, X. Wang, C. Redshaw, X. Feng, J.W.Y. Lam, Z. Zhao, B.Z. Tang, Y-Shaped Pyrene-Based Aggregation-Induced Emission Blue Emitters for High-Performance OLED Devices, Advanced Optical Materials. 2200917 (2022) 1–10. https://doi.org/10.1002/adom.202200917.
[68] K.H. Kim, E.S. Ahn, J.S. Huh, Y.H. Kim, J.J. Kim, Design of Heteroleptic Ir Complexes with Horizontal Emitting Dipoles for Highly Efficient Organic Light-Emitting Diodes with an External Quantum Efficiency of 38%, Chemistry of Materials. 28 (2016) 7505–7510. https://doi.org/10.1021/acs.chemmater.6b03428.
[69] X. Li, W. Liu, K. Chen, R. Wu, G. Liu, L. Zhou, High-performance narrow spectrum green phosphorescent top-emitting organic light-emitting devices with external quantum efficiency up to 38%, Semiconductor Science and Technology. 37 (2022). https://doi.org/10.1088/1361-6641/ac3f47.
[70] G.Z. Lu, Z.L. Tu, L. Liu, W.W. Zhang, Y.X. Zheng, Fast synthesis of iridium(iii) complexes with sulfur-containing ancillary ligand for high-performance green OLEDs with EQE exceeding 31%, Journal of Materials Chemistry C. 7 (2019) 7273–7278. https://doi.org/10.1039/c9tc01397k.
[71] R. Braveenth, H. Lee, J.D. Park, K.J. Yang, S.J. Hwang, K.R. Naveen, R. Lampande, J.H. Kwon, Achieving Narrow FWHM and High EQE Over 38% in Blue OLEDs Using Rigid Heteroatom-Based Deep Blue TADF Sensitized Host, Advanced Functional Materials. 31 (2021) 1–9. https://doi.org/10.1002/adfm.202105805.
[72] J. Wang, N. Li, Q. Chen, Y. Xiang, X. Zeng, S. Gong, Y. Zou, Y. Liu, Triarylboron-cored multi-donors TADF emitter with high horizontal dipole orientation ratio achieving high performance OLEDs with near 39% external quantum efficiency and small efficiency Roll-off, Chemical Engineering Journal. 450 (2022) 137805. https://doi.org/10.1016/j.cej.2022.137805.
[73] Y. Zou, J. Hu, M. Yu, J. Miao, Z. Xie, Y. Qiu, X. Cao, C. Yang, High-Performance Narrowband Pure-Red OLEDs with External Quantum Efficiencies up to 36.1% and Ultralow Efficiency Roll-Off, Advanced Materials. 34 (2022) 1–8. https://doi.org/10.1002/adma.202201442.
[74] Z. Xie, C. Cao, Y. Zou, X. Cao, C. Zhou, J. He, C.S. Lee, C. Yang, Molecular Engineering Enables TADF Emitters Well Suitable for Non-Doped OLEDs with External Quantum Efficiency of Nearly 30%, Advanced Functional Materials. 32 (2022) 1–11. https://doi.org/10.1002/adfm.202112881.
[75] H. Zhang, Z. Chen, L. Zhu, Y. Wu, Y. Xu, S. Chen, W.Y. Wong, High Performance NIR OLEDs with Emission Peak Beyond 760 nm and Maximum EQE of 6.39%, Advanced Optical Materials. 2200111 (2022) 1–8. https://doi.org/10.1002/adom.202200111.
[76] T. Hua, J. Miao, H. Xia, Z. Huang, X. Cao, N. Li, C. Yang, Sulfone-Incorporated Multi-Resonance TADF Emitter for High-Performance Narrowband Blue OLEDs with EQE of 32%, Advanced Functional Materials. 2201032 (2022) 1–9. https://doi.org/10.1002/adfm.202201032.
[77] Z. Chen, N. Tian, P. Tao, S. Chen, D. Ma, L. Wang, W.Y. Wong, A Pure Blue Phosphorescent Organic Light-Emitting Diode with an External Quantum Efficiency of Over 30% by Using a Tandem Device Architecture, Advanced Materials Interfaces. 2200932 (2022) 1–6. https://doi.org/10.1002/admi.202200932.
[78] Y. Xu, Y. Niu, C. Gong, W. Shi, X. Yang, B. Wei, W.Y. Wong, High-Performance Inverted Tandem OLEDs with the Charge Generation Layer based on MoOx and Ag Doped Planar Heterojunction, Advanced Optical Materials. 10 (2022) 1–9. https://doi.org/10.1002/adom.202200984.
[79] Q. Wang, J. Ding, Z. Zhang, D. Ma, Y. Cheng, L. Wang, F. Wang, A high-performance tandem white organic light-emitting diode combining highly effective white-units and their interconnection layer, Journal of Applied Physics. 105 (2009) 8–11. https://doi.org/10.1063/1.3106051.
[80] H.C. Corporation, United States Patent No. 5,008,230, 2 (1991).
[81] M.Y. Chan, S.L. Lai, K.M. Lau, M.K. Fung, C.S. Lee, S.T. Lee, Influences of connecting unit architecture on the performance of tandem organic light-emitting devices, Advanced Functional Materials. 17 (2007) 2509–2514. https://doi.org/10.1002/adfm.200600642.
[82] H. Sasabe, J. Kido, Development of high performance OLEDs for general lighting, Journal of Materials Chemistry C. 1 (2013) 1699–1707. https://doi.org/10.1039/c2tc00584k.
[83] H. Sasabe, K. Minamoto, Y.J. Pu, M. Hirasawa, J. Kido, Ultra high-efficiency multi-photon emission blue phosphorescent OLEDs with external quantum efficiency exceeding 40%, Organic Electronics. 13 (2012) 2615–2619. https://doi.org/10.1016/j.orgel.2012.07.019.
[84] J.H. Jou, C.H. Chen, J.R. Tseng, S.H. Peng, P.W. Chen, C.I. Chiang, Y.C. Jou, J.H. Hong, C.C. Wang, C.C. Chen, F.C. Tung, S.H. Chen, Y.S. Wang, C.L. Chin, Using light-emitting dyes as a co-host to markedly improve efficiency roll-off in phosphorescent yellow organic light emitting diodes, Journal of Materials Chemistry C. 1 (2013) 394–400. https://doi.org/10.1039/c2tc00067a.
[85] J.H. Jou, M.H. Wu, C.P. Wang, Y.S. Chiu, P.H. Chiang, H.C. Hu, R.Y. Wang, Efficient fluorescent white organic light-emitting diodes using co-host/emitter dual-role possessed di(triphenyl-amine)-1,4-divinyl-naphthalene, Organic Electronics. 8 (2007) 735–742. https://doi.org/10.1016/j.orgel.2007.06.010.
[86] J.H. Jou, T.H. Li, S. Kumar, C.C. An, A. Agrawal, S.Z. Chen, P.H. Fang, G. Krucaite, S. Grigalevicius, J. Grazulevicius, C.F. Sung, Enabling high-efficiency organic light-emitting diodes with a cross-linkable electron confining hole transporting material, Organic Electronics. 24 (2015) 254–262. https://doi.org/10.1016/j.orgel.2015.06.003.
[87] M. Singh, J.H. Jou, S. Sahoo, S. Sujith, Z.K. He, G. Krucaite, S. Grigalevicius, C.W. Wang, High light-quality OLEDs with a wet-processed single emissive layer, Scientific Reports. 8 (2018) 2–10. https://doi.org/10.1038/s41598-018-24125-4.
[88] Y.F. Chang, C.H. Yu, S.C. Yang, I.H. Hong, S.C. Jiang, H.F. Meng, H.L. Huang, H.W. Zan, S.F. Horng, Great improvement of operation-lifetime for all-solution OLEDs with mixed hosts by blade coating, Organic Electronics. 42 (2017) 75–86. https://doi.org/10.1016/j.orgel.2016.12.003.
[89] Y. Zhu, S. Zeng, W. Gong, X. Chen, C. Xiao, H. Ma, W. Zhu, J. Yeob Lee, Y. Wang, Molecular design of blue thermally activated delayed fluorescent emitters for high efficiency solution processable OLED via an intramolecular locking strategy, Chemical Engineering Journal. 450 (2022) 138459. https://doi.org/10.1016/j.cej.2022.138459.
[90] Q. Wang, L. Chen, Q. Yang, Y. Xu, H. Wang, Z. Xie, Efficient Solution-Processed Red Fluorescent OLEDs Using Diluted Exciplex Host to Reduce Non-Radiative Loss of Triplet Excitons, Advanced Materials Interfaces. 9 (2022) 1–9. https://doi.org/10.1002/admi.202200830.
[91] X. Wei, T. Hu, Z. Li, Y. Liu, X. Hu, H. Gao, G. Liu, P. Wang, Y. Yi, Y. Wang, Rational strategy of exciplex-type thermally activated delayed fluorescent (TADF) emitters: Stacking of donor and acceptor units of the intramolecular TADF molecule, Chemical Engineering Journal. 433 (2022). https://doi.org/10.1016/j.cej.2021.133546.
[92] R. Xia, Z. Zhang, H. Wang, K. Wang, X. Li, Z. Wang, Electroplex hosts for highly efficient phosphorescent organic light-emitting diodes with extremely small efficiency roll-offs, Chemical Engineering Journal. 432 (2022) 134314. https://doi.org/10.1016/j.cej.2021.134314.
[93] Y.S. Chen, D. Luo, W.C. Wei, B.L. Chen, T.H. Yeh, S.W. Liu, K.T. Wong, New Exciplex-Forming Co-Host System and Thienothiadazole-based Fluorescent Emitter for High-Efficiency and Promising Stability Near-Infrared OLED, Advanced Optical Materials. 10 (2022) 1–10. https://doi.org/10.1002/adom.202101952.
[94] Y. Wen, Y.K. Wang, J.G. Zhou, J.Y. Li, W. He, Y.J. Zhang, X.Z. Zhu, L.S. Liao, M.K. Fung, Exciplex host coupled with a micro-cavity enabling high efficiency OLEDs with narrow emission profile, Journal of Materials Chemistry C. 10 (2022) 5666–5671. https://doi.org/10.1039/d1tc05978e.
[95] M. Sarma, L.M. Chen, Y.S. Chen, K.T. Wong, Exciplexes in OLEDs: Principles and promises, Materials Science and Engineering R: Reports. 150 (2022) 100689. https://doi.org/10.1016/j.mser.2022.100689.
[96] D. Wang, J.H. Huang, H.L. Liu, W. Peng, S.H. Zou, Z.P. Miao, X.M. Chen, Y. Zhang, Highly efficient blue quantum-dot light-emitting diodes based on a mixed composite of a carbazole donor and a triazine acceptor as the hole transport layer, Physical Chemistry Chemical Physics. 24 (2022) 16148–16155. https://doi.org/10.1039/d2cp01777f.
[97] C.H. Chen, S.C. Lin, B.Y. Lin, C.Y. Li, Y.C. Kong, Y.S. Chen, S.C. Fang, C.H. Chiu, J.H. Lee, K.T. Wong, C.F. Lin, W.Y. Hung, T.L. Chiu, New bipolar host materials for high power efficiency green thermally activated delayed fluorescence OLEDs, Chemical Engineering Journal. 442 (2022) 136292. https://doi.org/10.1016/j.cej.2022.136292.
[98] G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, J. Salbeck, High-efficiency and low-voltage p-i-n electrophosphorescent organic light-emitting diodes with double-emission layers, Applied Physics Letters. 85 (2004) 3911–3913. https://doi.org/10.1063/1.1812378.
[99] Y. Sun, S.R. Forrest, Multiple exciton generation regions in phosphorescent white organic light emitting devices, Organic Electronics. 9 (2008) 994–1001. https://doi.org/10.1016/j.orgel.2008.06.019.
[100] H.W. Bae, G.W. Kim, R. Lampande, J.H. Park, I.J. Ko, H.J. Yu, C.Y. Lee, J.H. Kwon, Efficiency enhancement in fluorescent deep-blue OLEDs by boosting singlet exciton generation through triplet fusion and charge recombination rate, Organic Electronics. 70 (2019) 1–6. https://doi.org/10.1016/j.orgel.2019.03.018.
[101] H. Lim, H.J. Cheon, G.S. Lee, M. Kim, Y.H. Kim, J.J. Kim, Enhanced Triplet-Triplet Annihilation of Blue Fluorescent Organic Light-Emitting Diodes by Generating Excitons in Trapped Charge-Free Regions, ACS Applied Materials and Interfaces. 11 (2019) 48121–48127. https://doi.org/10.1021/acsami.9b15303.
[102] Y.H. Son, M.J. Park, Y.J. Kim, J.H. Yang, J.S. Park, J.H. Kwon, Color stable phosphorescent white organic light-emitting diodes with double emissive layer structure, Organic Electronics. 14 (2013) 1183–1188. https://doi.org/10.1016/j.orgel.2013.01.019.
[103] N.C. Erickson, R.J. Holmes, Investigating the role of emissive layer architecture on the exciton recombination zone in organic light-emitting devices, Advanced Functional Materials. 23 (2013) 5190–5198. https://doi.org/10.1002/adfm.201300101.
[104] N.C. Erickson, R.J. Holmes, Engineering Efficiency Roll-Off in Organic Light-Emitting Devices, Advanced Functional Materials. 24 (2014) 6074–6080. https://doi.org/10.1002/adfm.201401009.
[105] J. Sohn, D. Ko, H. Lee, J. Han, S.D. Lee, C. Lee, Degradation mechanism of blue thermally activated delayed fluorescent organic light-emitting diodes under electrical stress, Organic Electronics. 70 (2019) 286–291. https://doi.org/10.1016/j.orgel.2019.04.033.
[106] S. Seo, S. Shitagaki, N. Ohsawa, H. Inoue, K. Suzuki, H. Nowatari, S. Yamazaki, Exciplex-triplet energy transfer: A new method to achieve extremely efficient organic light-emitting diode with external quantum efficiency over 30% and drive voltage below 3V, Japanese Journal of Applied Physics. 53 (2014). https://doi.org/10.7567/JJAP.53.042102.
[107] X. Song, D. Zhang, H. Li, M. Cai, T. Huang, L. Duan, Exciplex System with Increased Donor-Acceptor Distance as the Sensitizing Host for Conventional Fluorescent OLEDs with High Efficiency and Extremely Low Roll-Off, ACS Applied Materials and Interfaces. (2019). https://doi.org/10.1021/acsami.9b05963.
[108] L. Chen, J. Lv, S. Wang, S. Shao, L. Wang, Dendritic Interfacial Exciplex Hosts for Solution-Processed TADF-OLEDs with Power Efficiency Approaching 100 lm W−1, Advanced Optical Materials. 9 (2021) 1–6. https://doi.org/10.1002/adom.202100752.
[109] Y. Seino, H. Sasabe, Y.J. Pu, J. Kido, High-performance blue phosphorescent OLEDs using energy transfer from exciplex, Advanced Materials. 26 (2014) 1612–1616. https://doi.org/10.1002/adma.201304253.
[110] Y.S. Park, S. Lee, K.H. Kim, S.Y. Kim, J.H. Lee, J.J. Kim, Exciplex-forming Co-host for organic light-emitting diodes with ultimate efficiency, Advanced Functional Materials. 23 (2013) 4914–4920. https://doi.org/10.1002/adfm.201300547.
[111] S.J. Su, C. Cai, J. Takamatsu, J. Kido, A host material with a small singlet-triplet exchange energy for phosphorescent organic light-emitting diodes: Guest, host, and exciplex emission, Organic Electronics. 13 (2012) 1937–1947. https://doi.org/10.1016/j.orgel.2012.06.009.
[112] S. Lee, H. Koo, O. Kwon, Y. Jae Park, H. Choi, K. Lee, B. Ahn, Y. Min Park, The Role of Charge Balance and Excited State Levels on Device Performance of Exciplex-based Phosphorescent Organic Light Emitting Diodes, Scientific Reports. 7 (2017) 1–9. https://doi.org/10.1038/s41598-017-12059-2.
[113] M. Wang, Y.H. Huang, K.S. Lin, T.H. Yeh, J. Duan, T.Y. Ko, S.W. Liu, K.T. Wong, B. Hu, Revealing the Cooperative Relationship between Spin, Energy, and Polarization Parameters toward Developing High-Efficiency Exciplex Light-Emitting Diodes, Advanced Materials. 31 (2019) 1–8. https://doi.org/10.1002/adma.201904114.
[114] B. Zhao, T. Zhang, B. Chu, W. Li, Z. Su, H. Wu, X. Yan, F. Jin, Y. Gao, C. Liu, Highly efficient red OLEDs using DCJTB as the dopant and delayed fluorescent exciplex as the host, Scientific Reports. 5 (2015) 1–8. https://doi.org/10.1038/srep10697.
[115] W. Liu, J.-X. Chen, C.-J. Zheng, K. Wang, D.-Y. Chen, F. Li, Y.-P. Dong, C.-S. Lee, X.-M. Ou, X.-H. Zhang, Novel Strategy to Develop Exciplex Emitters for High-Performance OLEDs by Employing Thermally Activated Delayed Fluorescence Materials, Advanced Functional Materials. 26 (2016) 2002–2008. https://doi.org/10.1002/adfm.201505014.
[116] M. Sarma, K.T. Wong, Exciplex: An Intermolecular Charge-Transfer Approach for TADF, ACS Applied Materials and Interfaces. 10 (2018) 19279–19304. https://doi.org/10.1021/acsami.7b18318.
[117] P. Xiao, J. Huang, Y. Yu, J. Yuan, D. Luo, B. Liu, D. Liang, Recent advances of exciplex-based white organic light-emitting diodes, Applied Sciences (Switzerland). 8 (2018) 1–27. https://doi.org/10.3390/app8091449.
[118] T.B. Nguyen, H. Nakanotani, T. Hatakeyama, C. Adachi, The Role of Reverse Intersystem Crossing Using a TADF-Type Acceptor Molecule on the Device Stability of Exciplex-Based Organic Light-Emitting Diodes, Advanced Materials. 32 (2020) 1–7. https://doi.org/10.1002/adma.201906614.
[119] X. Song, D. Zhang, Y. Lu, C. Yin, L. Duan, Understanding and Manipulating the Interplay of Wide-Energy-Gap Host and TADF Sensitizer in High-Performance Fluorescence OLEDs, Advanced Materials. 31 (2019) 1–9. https://doi.org/10.1002/adma.201901923.
[120] W.Y. Hung, G.C. Fang, S.W. Lin, S.H. Cheng, K.T. Wong, T.Y. Kuo, P.T. Chou, The first tandem, all-exciplex-based woled, Scientific Reports. 4 (2014) 4–9. https://doi.org/10.1038/srep05161.
[121] K. Kishore Kesavan, J. Jayakumar, M. Lee, C. Hexin, S. Sudheendran Swayamprabha, D. Kumar Dubey, F.C. Tung, C.W. Wang, J.H. Jou, Achieving a 32% EQE solution-processed simple structure OLED via exciplex system, Chemical Engineering Journal. 435 (2022) 134879. https://doi.org/10.1016/j.cej.2022.134879.
[122] L.S. Hung, C.H. Chen, Recent progress of molecular organic electroluminescent materials and devices, Materials Science and Engineering R: Reports. 39 (2002) 143–222. https://doi.org/10.1016/S0927-796X(02)00093-1.
[123] G.P. Petersson, C.M. Svensson, J. Maserjian, Resonance effects observed at the onset of Fowler-Nordheim tunneling in thin MOS structures, Solid State Electronics. 18 (1975) 449–451. https://doi.org/10.1016/0038-1101(75)90047-7.
[124] A.J. Sandee, C.K. Williams, N.R. Evans, J.E. Davies, C.E. Boothby, A. Köhler, R.H. Friend, A.B. Holmes, Solution-processible conjugated electrophosphorescent polymers, Journal of the American Chemical Society. 126 (2004) 7041–7048. https://doi.org/10.1021/ja039445o.
[125] W.R. Silveira, J.A. Marohn, Microscopic view of charge injection in an organic semiconductor, Physical Review Letters. 93 (2004) 2–5. https://doi.org/10.1103/PhysRevLett.93.116104.
[126] I.H. Campbell, B.K. Crone, Characteristics of an organic light-emitting diode utilizing a phosphorescent, shallow hole trap, Applied Physics Letters. 89 (2006). https://doi.org/10.1063/1.2364602.
[127] C.S. M Pope, Electronic Processes in Organic Crystals and Polymers", 2nd , Oxford University Press, 1999.
[128] S.W. JH Lee, IC Cheng, H Hua, Introduction to Flat Panel Displays, 2020.
[129] I. Brodie, Physical Considerations in Vacuum Microelectronics Devices, IEEE Transactions on Electron Devices. 36 (1989) 2641–2644. https://doi.org/10.1109/16.43766.
[130] T. Tsai, J. Hums, zation of Micro tip, (n.d.) 109–110.
[131] C. Groves, N.C. Greenham, Bimolecular recombination in polymer electronic devices, Physical Review B - Condensed Matter and Materials Physics. 78 (2008) 1–8. https://doi.org/10.1103/PhysRevB.78.155205.
[132] M. Kuik, L.J.A. Koster, G.A.H. Wetzelaer, P.W.M. Blom, Trap-assisted recombination in disordered organic semiconductors, Physical Review Letters. 107 (2011) 1–5. https://doi.org/10.1103/PhysRevLett.107.256805.
[133] T.B. D. Oxtoby, W. Freeman, Chemistry: Science of Change, 1990.
[134] J. Lee, J. Song, J. Park, S. Yoo, Toward Ultra-Efficient OLEDs: Approaches Based on Low Refractive Index Materials, Advanced Optical Materials. 9 (2021) 1–12. https://doi.org/10.1002/adom.202002182.
[135] S. Garner, D. Chowdhury, S. Lewis, Ultrathin glass substrates for thin, lightweight, flexible OLED lighting, Information Display. 35 (2019) 9–13. https://doi.org/10.1002/msid.1045.
[136] A. Salehi, X. Fu, D.H. Shin, F. So, Recent Advances in OLED Optical Design, Advanced Functional Materials. 29 (2019) 1–21. https://doi.org/10.1002/adfm.201808803.
[137] M.S. Lin, K.C. Tien, C.C. Chen, H.W. Chang, Y.H. Huang, C.C. Wu, Influences of ITO anode thickness on OLED efficiencies, 2010 23rd Annual Meeting of the IEEE Photonics Society, PHOTINICS 2010. (2010) 570–571. https://doi.org/10.1109/PHOTONICS.2010.5699015.
[138] K.J. Kumar, N.R.C. Raju, A. Subrahmanyam, Thickness dependent physical and photocatalytic properties of ITO thin films prepared by reactive DC magnetron sputtering, Applied Surface Science. 257 (2011) 3075–3080. https://doi.org/10.1016/j.apsusc.2010.10.119.
[139] C.N. Li, C.Y. Kwong, A.B. Djurišić, P.T. Lai, P.C. Chui, W.K. Chan, S.Y. Liu, Improved performance of OLEDs with ITO surface treatments, Thin Solid Films. 477 (2005) 57–62. https://doi.org/10.1016/j.tsf.2004.08.111.
[140] S. Ahn, T.H. Han, K. Maleski, J. Song, Y.H. Kim, M.H. Park, H. Zhou, S. Yoo, Y. Gogotsi, T.W. Lee, A 2D Titanium Carbide MXene Flexible Electrode for High-Efficiency Light-Emitting Diodes, Advanced Materials. 32 (2020) 1–7. https://doi.org/10.1002/adma.202000919.
[141] K.S. Novoselov, V.I. Fal’Ko, L. Colombo, P.R. Gellert, M.G. Schwab, K. Kim, A roadmap for graphene, Nature. 490 (2012) 192–200. https://doi.org/10.1038/nature11458.
[142] S. Jiang, P.X. Hou, C. Liu, H.M. Cheng, High-performance single-wall carbon nanotube transparent conductive films, Journal of Materials Science and Technology. 35 (2019) 2447–2462. https://doi.org/10.1016/j.jmst.2019.07.011.
[143] T. Ye, L. Jun, L. Kun, W. Hu, C. Ping, D. Ya-Hui, C. Zheng, L. Yun-Fei, W. Hao-Ran, D. Yu, Inkjet-printed Ag grid combined with Ag nanowires to form a transparent hybrid electrode for organic electronics, Organic Electronics. 41 (2017) 179–185. https://doi.org/10.1016/j.orgel.2016.10.046.
[144] S. Naghdi, G. Sanchez-Arriaga, K.Y. Rhee, Tuning the work function of graphene toward application as anode and cathode, Journal of Alloys and Compounds. 805 (2019) 1117–1134. https://doi.org/10.1016/j.jallcom.2019.07.187.
[145] S.E. Shaheen, G.E. Jabbour, M.M. Morrell, Y. Kawabe, B. Kippelen, N. Peyghambarian, M.F. Nabor, R. Schlaf, E.A. Mash, N.R. Armstrong, Bright blue organic light-emitting diode with improved color purity using a LiF/Al cathode, Journal of Applied Physics. 84 (1998) 2324–2327. https://doi.org/10.1063/1.368299.
[146] B. Xiao, B. Yao, C. Ma, S. Liu, Z. Xie, L. Wang, Highly efficient top-emitting organic light-emitting devices with aluminium electrodes, Semiconductor Science and Technology. 20 (2005) 952–955. https://doi.org/10.1088/0268-1242/20/9/011.
[147] M.G. Song, K.S. Kim, H.I. Yang, S.K. Kim, J.H. Kim, C.W. Han, H.C. Choi, R. Pode, J.H. Kwon, Highly reliable and transparent Al doped Ag cathode fabricated using thermal evaporation for transparent OLED applications, Organic Electronics. 76 (2020) 105418. https://doi.org/10.1016/j.orgel.2019.105418.
[148] S.B. Ko, S. Kang, T. Kim, A Silane-Based Bipolar Host with High Triplet Energy for High Efficiency Deep-Blue Phosphorescent OLEDs with Improved Device Lifetime, Chemistry - A European Journal. 26 (2020) 7767–7773. https://doi.org/10.1002/chem.202000018.
[149] S. V. Kunz, C.M. Cole, S.C. Gauci, F. Zaar, P.E. Shaw, C.S.K. Ranasinghe, T. Baumann, P. Sonar, S.D. Yambem, E. Blasco, C. Barner-Kowollik, J.P. Blinco, A simplified approach to thermally activated delayed fluorescence (TADF) bipolar host polymers, Polymer Chemistry. 13 (2022) 4241–4248. https://doi.org/10.1039/d2py00511e.
[150] J. Tagare, S. Vaidyanathan, Recent development of phenanthroimidazole-based fluorophores for blue organic light-emitting diodes (OLEDs): an overview, Journal of Materials Chemistry C. 6 (2018) 10138–10173. https://doi.org/10.1039/C8TC03689F.
[151] H.H. Chou, C.H. Cheng, A highly efficient universal bipolar host for blue, green, and red phosphorescent OLEDs, Advanced Materials. 22 (2010) 2468–2471. https://doi.org/10.1002/adma.201000061.
[152] K. Song, J. Li, D. Liu, Y. Lan, C. Wu, B. Liu, C. Shi, Bicarbazole-cyanopyridine based bipolar host materials for green and blue phosphorescent OLEDs: influence of the linking style between P- and N-type units, New Journal of Chemistry. 46 (2022) 10787–10796. https://doi.org/10.1039/d2nj01737g.
[153] K.S. Yook, J.Y. Lee, Bipolar Host Materials for Organic Light-Emitting Diodes, Chemical Record. 16 (2016) 159–172. https://doi.org/10.1002/tcr.201500221.
[154] S.J. Su, H. Sasabe, T. Takeda, J. Kido, Pyridine-containing bipolar host materials for highly efficient blue phosphorescent OLEDs, Chemistry of Materials. 20 (2008) 1691–1693. https://doi.org/10.1021/cm703682q.
[155] M. Cai, D. Zhang, J. Xu, X. Hong, C. Zhao, X. Song, Y. Qiu, H. Kaji, L. Duan, Unveiling the Role of Langevin and Trap-Assisted Recombination in Long Lifespan OLEDs Employing Thermally Activated Delayed Fluorophores, ACS Applied Materials and Interfaces. 11 (2019) 1096–1108. https://doi.org/10.1021/acsami.8b16784.
[156] D. Zhang, X. Song, A.J. Gillett, B.H. Drummond, S.T.E. Jones, G. Li, H. He, M. Cai, D. Credgington, L. Duan, Efficient and Stable Deep-Blue Fluorescent Organic Light-Emitting Diodes Employing a Sensitizer with Fast Triplet Upconversion, Advanced Materials. 32 (2020) 1–9. https://doi.org/10.1002/adma.201908355.
[157] T.L. Wu, S.Y. Liao, P.Y. Huang, Z.S. Hong, M.P. Huang, C.C. Lin, M.J. Cheng, C.H. Cheng, Exciplex Organic Light-Emitting Diodes with Nearly 20% External Quantum Efficiency: Effect of Intermolecular Steric Hindrance between the Donor and Acceptor Pair, ACS Applied Materials and Interfaces. (2019). https://doi.org/10.1021/acsami.9b04365.
[158] Q.S. Tian, L. Zhang, Y. Hu, S. Yuan, Q. Wang, L.S. Liao, High-Performance White Organic Light-Emitting Diodes with Simplified Structure Incorporating Novel Exciplex-Forming Host, ACS Applied Materials and Interfaces. 10 (2018) 39116–39123. https://doi.org/10.1021/acsami.8b17737.
[159] J.H. Lee, S. Lee, S.J. Yoo, K.H. Kim, J.J. Kim, Langevin and trap-assisted recombination in phosphorescent organic light emitting diodes, Advanced Functional Materials. 24 (2014) 4681–4688. https://doi.org/10.1002/adfm.201303453.
[160] S.R. Forrest, D.D.C. Bradley, M.E. Thompson, Measuring the efficiency of organic light-emitting devices, Advanced Materials. 15 (2003) 1043–1048. https://doi.org/10.1002/adma.200302151.
[161] W.Y. Hung, P.Y. Chiang, S.W. Lin, W.C. Tang, Y.T. Chen, S.H. Liu, P.T. Chou, Y.T. Hung, K.T. Wong, Balance the Carrier Mobility to Achieve High Performance Exciplex OLED Using a Triazine-Based Acceptor, ACS Applied Materials and Interfaces. 8 (2016) 4811–4818. https://doi.org/10.1021/acsami.5b11895.
[162] H. Shin, J.-H. Lee, C.-K. Moon, J.-S. Huh, B. Sim, J.-J. Kim, Blue phosphorescent OLEDs with 34.1% external quantum efficiency using a low refractive index electron transporting material, Organic Light Emitting Materials and Devices XX. 9941 (2016) 99411X. https://doi.org/10.1117/12.2236763.
[163] J.H. Lee, H. Shin, J.M. Kim, K.H. Kim, J.J. Kim, Exciplex-forming co-host-based red phosphorescent organic light-emitting diodes with long operational stability and high efficiency, ACS Applied Materials and Interfaces. 9 (2017) 3277–3281. https://doi.org/10.1021/acsami.6b14438.
[164] H. Fukagawa, T. Shimizu, T. Kamada, S. Yui, M. Hasegawa, K. Morii, T. Yamamoto, Highly efficient and stable organic light-emitting diodes with a greatly reduced amount of phosphorescent emitter, Scientific Reports. 5 (2015) 1–7. https://doi.org/10.1038/srep09855.
[165] W.Y. Hung, G.C. Fang, Y.C. Chang, T.Y. Kuo, P.T. Chou, S.W. Lin, K.T. Wong, Highly efficient bilayer interface exciplex for yellow organic light-emitting diode, ACS Applied Materials and Interfaces. 5 (2013) 6826–6831. https://doi.org/10.1021/am402032z.
[166] H.F. Chen, T.C. Wang, S.W. Lin, W.Y. Hung, H.C. Dai, H.C. Chiu, K.T. Wong, M.H. Ho, T.Y. Cho, C.W. Chen, C.C. Lee, Peripheral modification of 1,3,5-triazine based electron-transporting host materials for sky blue, green, yellow, red, and white electrophosphorescent devices, Journal of Materials Chemistry. 22 (2012) 15620–15627. https://doi.org/10.1039/c2jm31904g.
[167] W.Y. Hung, T.C. Wang, P.Y. Chiang, B.J. Peng, K.T. Wong, Remote Steric Effect as a Facile Strategy for Improving the Efficiency of Exciplex-Based OLEDs, ACS Applied Materials and Interfaces. 9 (2017) 7355–7361. https://doi.org/10.1021/acsami.6b16083.
[168] H.G. Kim, K.H. Kim, C.K. Moon, J.J. Kim, Harnessing Triplet Excited States by Fluorescent Dopant Utilizing Codoped Phosphorescent Dopant in Exciplex Host for Efficient Fluorescent Organic Light Emitting Diodes, Advanced Optical Materials. 5 (2017) 2–7. https://doi.org/10.1002/adom.201600749.
[169] K.H. Kim, C.K. Moon, J.H. Lee, S.Y. Kim, J.J. Kim, Highly efficient organic light-emitting diodes with phosphorescent emitters having high quantum yield and horizontal orientation of transition dipole moments, Advanced Materials. 26 (2014) 3844–3847. https://doi.org/10.1002/adma.201305733.
[170] H. Sasabe, N. Toyota, H. Nakanishi, T. Ishizaka, Y.J. Pu, J. Kido, 3,3’-Bicarbazole-based host materials for high-efficiency blue phosphorescent OLEDs with extremely low driving voltage, Advanced Materials. 24 (2012) 3212–3217. https://doi.org/10.1002/adma.201200848.
[171] H. Sasabe, H. Nakanishi, Y. Watanabe, S. Yano, M. Hirasawa, Y.J. Pu, J. Kido, Extremely low operating voltage green phosphorescent organic light-emitting devices, Advanced Functional Materials. 23 (2013) 5550–5555. https://doi.org/10.1002/adfm.201301069.
[172] Y.M. Xie, L.S. Cui, F.S. Zu, F. Igbari, M.M. Xue, Z.Q. Jiang, L.S. Liao, High efficiency and low driving voltage blue/white electrophosphorescence enabled by the synergistic combination of singlet and triplet energy of bicarbazole derivatives, Organic Electronics. 26 (2015) 25–29. https://doi.org/10.1016/j.orgel.2015.07.018.
[173] W. Jiang, L. Duan, J. Qiao, G. Dong, D. Zhang, L. Wang, Y. Qiu, High-triplet-energy tri-carbazole derivatives as host materials for efficient solution-processed blue phosphorescent devices, Journal of Materials Chemistry. 21 (2011) 4918–4926. https://doi.org/10.1039/c0jm03365k.
[174] W. Liu, J.-X. Chen, C.-J. Zheng, K. Wang, D.-Y. Chen, F. Li, Y.-P. Dong, C.-S. Lee, X.-M. Ou, X.-H. Zhang, Novel Strategy to Develop Exciplex Emitters for High-Performance OLEDs by Employing Thermally Activated Delayed Fluorescence Materials, Advanced Functional Materials. 26 (2016) 2002–2008. https://doi.org/10.1002/adfm.201505014.
[175] C.S. Oh, Y.J. Kang, S.K. Jeon, J.Y. Lee, High Efficiency Exciplex Emitters Using Donor-Acceptor Type Acceptor Material, Journal of Physical Chemistry C. 119 (2015) 22618–22624. https://doi.org/10.1021/acs.jpcc.5b05292.
[176] S.K. Jeon, J.Y. Lee, Highly efficient exciplex organic light-emitting diodes by exciplex dispersion in the thermally activated delayed fluorescence host, Organic Electronics. 76 (2020) 105477. https://doi.org/10.1016/j.orgel.2019.105477.
[177] Y. Zhang, C. Liu, X.C. Hang, Q. Xue, G. Xie, C. Zhang, T. Qin, Z. Sun, Z.K. Chen, W. Huang, Phenylquinoline fused cyclic derivatives as electron acceptors of exciplex forming hosts for solution-processable red phosphorescent OLEDs, Journal of Materials Chemistry C. 6 (2018) 8035–8041. https://doi.org/10.1039/c8tc02757a.
[178] J. Zhao, C. Zheng, Y. Zhou, C. Li, J. Ye, X. Du, W. Li, Z. He, M. Zhang, H. Lin, S. Tao, X. Zhang, Novel small-molecule electron donor for solution-processed ternary exciplex with 24% external quantum efficiency in organic light-emitting diode, Materials Horizons. 6 (2019) 1425–1432. https://doi.org/10.1039/c9mh00373h.
[179] X.K. Liu, Z. Chen, C.J. Zheng, C.L. Liu, C.S. Lee, F. Li, X.M. Ou, X.H. Zhang, Prediction and design of efficient exciplex emitters for high-efficiency, thermally activated delayed-fluorescence organic light-emitting diodes, Advanced Materials. 27 (2015) 2378–2383. https://doi.org/10.1002/adma.201405062.
[180] D.J. Stewart, M.J. Dalton, R.N. Swiger, T.M. Cooper, J.E. Haley, L.S. Tan, Exciplex formation in blended spin-cast films of fluorene-linked dyes and bisphthalimide quenchers, Journal of Physical Chemistry A. 117 (2013) 3909–3917. https://doi.org/10.1021/jp312029e.
[181] J. Pandidurai, J. Jayakumar, N. Senthilkumar, C.H. Cheng, Effects of intramolecular hydrogen bonding on the conformation and luminescence properties of dibenzoylpyridine-based thermally activated delayed fluorescence materials, Journal of Materials Chemistry C. 7 (2019) 13104–13110. https://doi.org/10.1039/c9tc04536h.
[182] H. Zhang, Q. Fu, W. Zeng, D. Ma, High-efficiency fluorescent organic light-emitting diodes with MoO3 and PEDOT : PSS composition film as a hole injection layer, Journal of Materials Chemistry C. 2 (2014) 9620–9624. https://doi.org/10.1039/c4tc01310g.
[183] M.R. Choi, T.H. Han, K.G. Lim, S.H. Woo, D.H. Huh, T.W. Lee, Soluble self-doped conducting polymer compositions with tunable work function as hole injection/extraction layers in organic optoelectronics, Angewandte Chemie - International Edition. 50 (2011) 6274–6277. https://doi.org/10.1002/anie.201005031.
[184] Y.H. Kim, T.H. Han, C. Lee, Y.H. Kim, Y. Yang, T.W. Lee, Molecular-Scale Strategies to Achieve High Efficiency and Low Efficiency Roll-off in Simplified Solution-Processed Organic Light-Emitting Diodes, Advanced Functional Materials. 30 (2020) 1–9. https://doi.org/10.1002/adfm.202005292.
[185] C.-Y. Lu, M. Jiao, W.-K. Lee, C.-Y. Chen, W.-L. Tsai, C.-Y. Lin, C.-C. Wu, Achieving Above 60% External Quantum Efficiency in Organic Light-Emitting Devices Using ITO-Free Low-Index Transparent Electrode and Emitters with Preferential Horizontal Emitting Dipoles, Advanced Functional Materials. 26 (2016) 3250–3258. https://doi.org/10.1002/adfm.201505312.
[186] Y.H. Li, X. Lu, R. Wang, Y.Y. Ma, S. Duhm, M.K. Fung, Cu-Doped nickel oxide prepared using a low-temperature combustion method as a hole-injection layer for high-performance OLEDs, Journal of Materials Chemistry C. 5 (2017) 11751–11757. https://doi.org/10.1039/c7tc03884d.
[187] S.D. Chavhan, T.H. Ou, M.R. Jiang, C.W. Wang, J.H. Jou, Enabling High-Efficiency Organic Light-Emitting Diode with Trifunctional Solution-Processable Copper(I) Thiocyanate, Journal of Physical Chemistry C. 122 (2018) 18836–18840. https://doi.org/10.1021/acs.jpcc.8b05029.
[188] R. Komatsu, H. Sasabe, S. Inomata, Y.J. Pu, J. Kido, High efficiency solution processed OLEDs using a thermally activated delayed fluorescence emitter, Synthetic Metals. 202 (2015) 165–168. https://doi.org/10.1016/j.synthmet.2015.02.009.
[189] N.R. Wallwork, M. Mamada, A. Shukla, S.K.M. McGregor, C. Adachi, E.B. Namdas, S.C. Lo, High-performance solution-processed red hyperfluorescent OLEDs based on cibalackrot, Journal of Materials Chemistry C. 10 (2021) 4767–4774. https://doi.org/10.1039/d1tc04937b.
[190] X.F. Peng, Y. Lei, Z. Liu, X.X. Ji, C.J. Fan, X.H. Yang, Sensitized, thermally activated, delayed fluorescence devices based on a polymer host material, Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica. 32 (2016) 2369–2376. https://doi.org/10.3866/PKU.WHXB201606031.
[191] Y.H. Kim, C. Wolf, H. Cho, S.H. Jeong, T.W. Lee, Highly Efficient, Simplified, Solution-Processed Thermally Activated Delayed-Fluorescence Organic Light-Emitting Diodes, Advanced Materials. 28 (2016) 734–741. https://doi.org/10.1002/adma.201504490.