簡易檢索 / 詳目顯示

研究生: 鐘仕堯
JHONG, SHIH-YAO
論文名稱: 摻鋁氧化鋅研製與特性研究
Preparation and Characterization of Aluminum-doped Zinc Oxide
指導教授: 江慧真
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 98
中文關鍵詞: 摻鋁氧化鋅化學沉澱法鋁酸鋅
外文關鍵詞: Aluminum doped zinc oxide, Chemical precipitation method, ZnAl2O4
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要採化學沉澱法製備摻鋁氧化鋅(Aluminum-doped zinc oxide (AZO))粉體。探討不同製程條件對於AZO特性的影響。首先將硝酸鋅和硝酸鋁配成溶液後與沉澱劑尿素或者氨水進行反應,摻雜不同的鋁鋅比例 (1%-11%),改變反應溫度、鋅鋁溶液的反應順序。前驅物經高溫爐燒結400℃-800℃,獲得AZO粉體。所得AZO分別以熱重分析儀、感應耦合電漿原子發射光譜分析儀、X光繞射儀、掃描式電子顯微鏡、傅立葉轉換紅外光譜儀、光致螢光光譜儀作材料性質的測量。由熱重分析結果表明前驅物的燒結溫度應高於500℃;以ICP-AES確定AZO樣品鋁鋅比例與理論鋁鋅比例無太大差異。由X光繞射結果得知鋁有摻雜進入氧化鋅中,若燒結溫度高於600℃,樣品會產生雜質鋁酸鋅。掃瞄式電子顯微鏡顯示其形貌會因為摻雜鋁元素、沉澱反應溫度不同和沉澱劑不同,而產生不同形貌。從紅外光譜偵測到400-600cm-1之間有Zn-O的振動吸收,若樣品存在雜質鋁酸鋅,則在677 cm-1附近有一寬吸收峰。AZO的發光特性與ZnO相似, PL光譜於380 nm附近出現氧化鋅的本質發光,而570 nm與660 nm出現氧化鋅的深層缺陷發光。


    Aluminum-doped zinc oxide (AZO) powders were synthesized using a chemical precipitation method. We use both reactants of zinc nitrate and aluminum nitrate as well as urea or ammonia as the precipitant to get precursor. Then the precursor with a doping rate varying from 1 to 11 mol.% of Al were calcined at 400℃-800℃ for three hours. The effects of the various synthesizing parameters, including reaction temperature, the doping amount of aluminum, and the pH value during chemical precipitation reaction, and the calcination temperature of the precursor were investigated in details. The results of inductively coupled plasma atomic emission spectrometer (ICP-AES) measurement ensured the stoichiometric ratio of Al/Zn in our AZO powders. By the thermogravimetric analysis (TGA), AZO powders stability generated when temperature higher than 500℃. The X-ray diffraction patterns showed that AZO powders exhibit Wurtzite ZnO structure. Thus we can determine that Al3+ is indeed doped into the zinc oxide. The powders calcined higher than 600℃ appeared the ZnAl2O4 phase. The images of scanning electron microscopy (SEM) showed different morphology depend on chemical reaction temperature or the pH value during chemical reaction or precipitant. In the Fourier-Transform Infrared Spectrum (FTIR), we observed vibration absorptions of Zn-O at 400-600 cm-1. A absorption peak was observed at 677 cm-1 if samples contain ZnAl2O. The luminescence properties of AZO and ZnO are similar. Observed intrinsic emission of ZnO at 380 nm and deep level emission of ZnO at 570 nm and 660 nm.

    中文摘要………………………………………………………III 英文摘要………………………………………………………IV 誌謝…………………………………………………………………V 目次………………………………………………………………VI 表次…………………………………………………………… X 圖次…………………………………………………………… XI 第一章 序論………………………………………………1 1.1 奈米科技發展史……………………………………………1 1.2 奈米科技…………………………………………………1 1.3 氧化鋅簡介…………………………………………………2 1.4 氧化鋅粉體製備方法…………………………………………2 1.4.1 沉澱法………………………………………………3 1.4.2 溶膠凝膠法…………………………………………5 1.4.3 水熱法……………………………………………6 1.4.4微乳液法…………………………………………7 1.4.5噴霧熱分解法……………………………………8 1.5 成核機制…………………………………………………………9 1.6氧化鋅應用……………………………………………………10 1.7 氧化鋅自身缺陷……………………………………………11 1.8 氧化鋅發光機制……………………………………………12 1.9 氧化鋅摻雜特性……………………………………………14 1.10 研究動機……………………………………………………17 第二章 實驗方法與流程……………………………25 2.1 實驗試劑…………………………………………………25 2.2 特性分析儀器………………………………………………25 2.2.1 感應耦合電漿原子發射光譜分析儀 (ICP-AES)...25 2.2.2 熱重分析儀 (TGA)………………………………25 2.2.3 X光粉末繞射儀 (XRD)…………………………26 2.2.4 熱場發射掃描式電子顯微鏡 (FESEM)………26 2.2.5 光致螢光光譜儀 (PL)……………………………27 2.2.6 傅立葉轉換紅外光譜儀 (FTIR)…………………28 2.3 化學沉澱法製備摻鋁氧化鋅前驅物……………………28 2.3.1 實驗方法A:化學沉澱法…………………………29 2.3.2 實驗方法B:鋁包覆沉澱法………………………29 2.4 固態研磨法製備摻鋁氧化鋅…………………………28 第三章 結果與討論……………………………………39 3.1 摻鋁氧化鋅前驅物製備………………………………………39 3.1.1探討化學沉澱法之最佳沉澱pH值……………………39 3.1.2沉澱劑選擇……………………………………………40 3.2 前導實驗………….………………………………………40 3.2.1 溫度對於摻鋁氧化鋅的影響………………………40 3.2.2摻鋁氧化鋅粉體之元素含量分析…………………42 3.3 摻鋁氧化鋅產物之鑑定與分析.…………………………43 3.3.1 摻鋁氧化鋅粉體鑑定與分析:實驗方法A-1………43 3.3.1.1 晶體結構分析…………………………………43 3.3.1.2表面形貌分析……………………………………45 3.3.1.3紅外性質分析……………………………………46 3.3.1.4發光特性分析……………………………………48 3.3.2 摻鋁氧化鋅粉體鑑定與分析:實驗方法A-2………48 3.3.2.1 晶體結構分析…………………………………48 3.3.2.2表面形貌分析……………………………………49 3.3.2.3紅外性質分析……………………………………51 3.3.2.4發光特性分析……………………………………52 3.3.3 摻鋁氧化鋅粉體鑑定與分析:實驗方法B………53 3.3.3.1 晶體結構分析…………………………………53 3.3.3.2表面形貌分析……………………………………53 3.3.3.3紅外性質分析……………………………………54 3.3.3.4發光特性分析……………………………………55 3.3.4 摻鋁氧化鋅粉體鑑定與分析:固態研磨法………55 3.3.4.1 晶體結構分析…………………………………55 3.3.4.2表面形貌分析……………………………………56 3.4 討論…………………………………………………………57 第四章 結論…………………………………………………77 參考文獻…………………………………………………………79 作者簡介…………………………………………………………83

    1.R. Kubo. J. Phys. SOC Japan, 1962, 17, 975.
    2.G. Binnig, H. Rohrer, Ch. Gerber and E. Weibel. Phys.Rev. Lett., 1983, 50, 120.
    3.R. Waser. Nanoelectronics and Information Technology, 2003,Weinheim : WILEY-VCH Verlag GmbH & Co. KGaA.
    4.Yefan Chen, Darren Bagnall and Takafumi Yao. Materials Science and Engineering B, 2000, 75, 190–198.
    5.Z. Fan and J. G. Lu. J. Nanosci Nanotechnol. 2005, 5, 1561-1573.
    6.Maurizio Castellano and Egon Matijevic. Chem. of Mater., 1989, 1, 78-82.
    7.Takeshi Tsuchida and Seiko Kitajima. Chem. Soc. Jpn., 1990, 19, 1769-1772.
    8.Sossina M. Haile and W. Johnson. J. Am. Ceram. Soc., 1989, 72, 2004.
    9.M. Andres Verges, A. Mifsud and C. J. Serna. J. Chem. Soc. Faraday Trans, 1990, 86, 959.
    10.Kazumi Fujita and Keizo Matsuda. Chem. Soc. Jpn., 1992, 65, 2270.
    11.Yoshio Sakka, Kohmei Halada and Eiichi Ozawa. Ceram. Trans., 1990, v3, 31.
    12.M. E. V. Costa and J. L. Baptista. J. of Eurp. Ceram. Soc., 1993, 11, 275-281.
    13.Kiichiro Kamata, Hirotsugu Hosono, Yuji Maeda and Kikuo Miyokawa. Chem. Soc. Jpn., 1984, 13, 2021-2022.
    14.Didier Jezequel, Jean Guenot, Noureddine Jouini and Fernand Fievet. J. Mater. Res., 1995, 10, 77-83.
    15.Corrie L. Carnes and Kenneth J. Klabunde. Langmuir, 2000, 16, 3764-3772.
    16.Alba Chittofrati and Egon Matijevic. Colloids and Surface, 1990, 48, 65-78.
    17.Tito Trindade and Paul O’Brien. J. Mater. Chem., 1994, 4, 1611-1617.
    18.M. Singhal, V. Chhabra P. Kang and D. O. Shah. Materials Research Bulletin, 1997, 32, 239-247.
    19.B. P. Lim, J. Wang, S. C. Ng, C. H. Chew and L. M. Gan. Ceramics international, 1998, 24, 205-209.
    20.O. Milosevic and D. Uskokovic. Mater. Sci. and Eng., 1993, A168, 249-252.
    21.O. Milosevic, D. Uskokovic, L. J. Karanovic, M. Tomasevic-Canovic and M. Trontelj. J. of Mater. Sci., 1993, 28, 5211-5217.
    22.O. Milosevi, B. Jordovic and D. Uskokovic. Mater. Lett., 1994, 19, 165-170.
    23.Tian-Quan Liu, Osamu Sakurai, Nobuyasu Mizutani and Masanori Kato. J. of Mater. Sci., 1986, 21, 3698.
    24.Kentaro Ohshima and Keiichi Tsuto. 化學工學論文集,1992, 18, 288.
    25.Yuanhua Lin, Zilong Tang, and Zhongtai Zhang. J. Am. Ceram. Soc, 2000, 83, 2869-2871.
    26.葉集賢,台灣大學化工研究所碩士論文,1997。
    27.E. Matijevic. Acc. Chem. Res.,1981, 14, 22.
    28.呂婉華,國立交通大學材料工程學與工程研究所碩士論文,2003。
    29.M.D. McCluskey and S.J. Jokela. Journal of Applied Physics,2009, 106, 071101.
    30.A. Janotti and C.G. Van de Walle. Physical ReviewB, 2007, 76, 165202.
    31.X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, and X. G. Kong. Lumine., 2002, 99, 149.
    32.K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt and B. E. Gande. J. Appl. Phys, 1996, 79, 7983.
    33.廖泓洲,國立交通大學材料科學與工程學系碩士論文,2005。
    34.U. Ozgur et al. Journal of Applied Physics, 2005, 98, 041301.
    35.Y.S. Choi, et al. IeeeTransactions on Electron Devices, 2010, 57, 26-41.
    36.James E. Huheey, Ellen A. Keiter and Richard L. Keiter. Inorganic Chemistry, Fourth Edition, 2007.
    37.WU Xiao-wei, FENG Yu-jie and LIU Yan-kun. Journal of Harbin Institute of Technology ( New Series), 2010, 17, 588-592.
    38.A.J. Behan, et al. Phys. Rev. Lett., 2008, 100, 047206.
    39.S.M. Rozati, et al. Thin Solid Films, 2009, 518, 1279-1282.
    40.E. Chikoidze, et al. Physica Status Solidi a-Applications and Materials Science, 2008, 205, 1575-1579.
    41.B.K. Meyer, et al. Physica Status Solidi B-Basic Research, 2004, 241,231-260.
    42.K.J. Chen, T.H. Fang and F.Y. Hung. J. Appl. Surface Science, 2008, 254, 5791-5795.
    43.B. Ingham, R. Linklater, and T. Kemmitt, J. Phys. Chem. C, 2011, 115, 21034 –21040.
    44.L.C. Damonte. Journal of Alloys and Compounds, 2010, 495, 432–435.
    45.J. Theo Kloproggea, János Kristófb and Ray L. Frosta. Clay Odyssey, 2001.
    46.Jayanta Kumar Behera, DEPARTMENT OF PHYSICS NATIONAL INSTITUTE OF TECHNOLOGY, ORISSA, INDIA, 2009.
    47.Hélène Serier, Manuel Gaudon and Michel Ménétrier. Solid State Sciences, 2009, 11, 1192–1197.
    48.H. Cheng, X.J. Xu, H.H. Hng and J. Ma. Ceramics International, 2009, 35, 3067–3072.
    49.Mingsong Wang, Yajun Zhou, Yiping Zhang, Sung Hong Hahn and Eui Jung Kim. CrystEngComm,2011, 13, 6024.
    50.R. A Laudise and A. A. Ballman. J. Phys. Chem., 1960, 64 ,688.
    51.R. A Laudise, B. D Kolb and A. J. Caporaso. J. Am. Ceram. Soc., 1964 , 47, 9.
    52.馬正先、姜玉芝、韓躍新、張士成。納米氧化鋅製備原理與技術,2009,336。北京:中國輕工業出版社。
    53.SABER O and TAGAYA H. J. Porous Mater, 2003 , 10, 83-91.
    54.柯以侃、吳明珠,儀器分析,2008,182。臺北:新文京圖書。
    55.柯以侃、吳明珠, 儀器分析,2008,223。臺北:新文京圖書。
    56.Junfeng Zhao, Zhida Han, Hongbin Lu, Xuhong Wang and Jianhua Chen. J. Mater Sci: Mater Electron, 2011, 22, 1361–1365.
    57.Bachari E M, Baud G and Amor S Ben, et al. Thin Solid Film, 1999, 348, 165.
    58.吳靜怡、郭玉華、劉亞輝、蒲敏。北京化工大學學報,2007,34,584。
    59.T. Monteiro, A. J. Neves, M. C. Carmo, M. J. Soares, M. Peres, J. Wang, E. Alves, E. Rita, and U. Wahl. J. Appl. Phys., 2005, 98, 013502.
    60.K. F. Lin, H. M. Cheng, H. C. Hsu, L. J. Lin, and W. F. Hsieh. Chem. Phys. Lett., 2005, 409, 208.
    61.陳耀銘,國立彰化師範大學光電科技研究所碩士論文,2012。
    62.K. Senthilkumar, M. Tokunaga, H. Okamoto, O. Senthilkumar, J. Lin, B. Urban, A. Neogi, and Y. Fujita. Phys. Status Solidi C, 2010, 7, 1586.
    63.Tim Kemmitt, Bridget Ingham, and Rachael Linklater. J. Phys. Chem. C, 2011, 115, 15031–15039.
    64.C. H. Lu and C. H. Yeh, Ceramics International, 2000, 26, 351.
    65.J. G. Wen, J. Y. Lao, D. Z. Wang, T. M. Kyaw, Y. L. Foo and Z. F. Ren. Chemical Physics Letters, 2003, 372, 717-722.
    66.馬正先、姜玉芝、韓躍新、張士成。納米氧化鋅製備原理與技術,2009,245。北京:中國輕工業出版社。
    67.Zhengru Zhu, Xinyong Li, Qidong Zhao, Shaomin Liu, Xijun Hu and Guohua Chen. Materials Letters, 2011, 65, 194–197.
    68.F. K. Shan, B. I. Kim, G. X. Liu, et al. J A ppl. Phys., 2004, 95, 4772-4776.
    69.YU-HSIEN CHOU, J L H CHAU, W L WANG, C S CHEN, S H WANG and C C YANG. Bull. Mater. Sci., 2011, 34, 477– 482.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE