研究生: |
蕭宇翔 Hsiao, Yu-Hsiang |
---|---|
論文名稱: |
超寬頻正交分頻多工系統之通道相關性分析 Channel Correlation Analysis for Ultra-Wideband OFDM Systems |
指導教授: |
趙啟超
Chao, Chi-chao |
口試委員: |
蘇育德
林茂昭 邱茂清 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 56 |
中文關鍵詞: | 超寬頻 、正交分頻多工 、同調頻寬 |
外文關鍵詞: | UWB, OFDM, coherence bandwidth |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
超寬頻 (Ultra-wideband, UWB) 技術不僅讓不同的系統能共存於相同頻帶,更提供低成本且高速度的短距離無線傳輸服務。由於超寬頻訊號的極大頻寬和極佳的時間解析度,此訊號具有對抗多重路徑通道衰退之特性。此外,如正交分頻多工 (Orthogonal Frequency Division Multiplexing, OFDM) 系統因具備簡單的通道等化以及高頻譜效益之優勢,已被建議使用於超寬頻通訊上。
在本論文中,我們將於IEEE 802.15.3a超寬頻通道模型下精確分析正交分頻多工系統中不同子載波頻率響應的相關性,並利用超寬頻訊號的特性簡化分析結果,進一步減少所需的計算量。接著根據精確的分析,我們計算描述同調頻寬 (Coherence Bandwidth) 和延遲擴展 (Delay Spread) 關係之參數。最後,透過所求得參數的線性回歸分析,我們提出了經過改善後的關係參數。這些修正後的參數會和先前研究量測出的參數相互比較,其結果顯示我們所提出的修正能更準確的描述時域及頻域通道特性轉換之關係。
Ultra-wideband (UWB) is a technology that can coexist with other systems and provide low-cost and high-speed indoor wireless services. Owing to its extremely wide bandwidth and high time resolution, multipath fading resistance and high-speed transmission are the main characteristics of UWB technology. In addition, schemes such as orthogonal frequency division multiplexing (OFDM) have been proposed for UWB systems due to the remarkable properties including simpler channel equalization and high spectral efficiency.
In this thesis, we perform a comprehensive study of correlation analysis for UWB-OFDM systems. First, precise evaluation of the correlations for OFDM systems over IEEE 802.15.3a channel structure is conducted. Simplified formulas are also provided to ease the computation burden. Subsequently, relation parameters in the relationship between coherence bandwidth and delay spread are determined with the aid of analytical results. Finally, linear regression is employed to provide improved relation parameters, which are compared with results of previous research to show the effectiveness of capturing time-frequency-domain characteristics.
[1] “Revision of part 15 of the commission's rules regarding ultra-wideband transmission systems,” FCC First Report and Order, ET-Docket 98-153, Feb. 2002.
[2] M. Z. Win and R. A. Scholtz, “Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple access communications,” IEEE Trans. Commun., vol. 48, no. 4, pp. 679-689, Apr. 2000.
[3] L. Yang and G. B. Giannakis, “Ultra-wideband communications: an idea whose time has come,” IEEE Signal Processing Mag., vol. 21, no. 6, pp. 26-54, Nov. 2004.
[4] S. Roy, J. R. Foerster, V. S. Somayazulu, and D. G. Leeper, “Ultrawideband radio design: the promise of high-speed, short-range wireless connectivity,” Proc. IEEE, vol. 92, no. 2, pp. 295-311, Feb. 2004.
[5] R. C. Qiu, H. Liu, and X. Shen, “Ultra-wideband for multiple access communications,” IEEE Commun. Mag., vol. 43, no. 2, pp. 80-87, Feb. 2005.
[6] J. Foerster, et al., “Channel modeling sub-committee report final,” IEEE doc.: IEEE P802.15-02/490r1-SG3a, Feb. 2003.
[7] A. F. Molisch, J. R. Foerster, and M. Pendergrass, “Channel models for ultrawideband personal area networks,” IEEE Wireless Commun., vol. 10, no. 6, pp. 14-21, Dec. 2003.
[8] A. Batra, et al., “Multi-band OFDM physical layer proposal for IEEE 802.15 task group 3a,” IEEE doc.: IEEE P802.15-04/0493r1, Sep. 2004.
[9] C.-J. Ahn, S. Takahashi, and H. Harada, “Adaptive subcarrier block modulation with differentially modulated pilot symbol assistance for downlink OFDM using uplink delay spread,” in Proc. IEEE Int. Symp. Personal, Indoor Mobile Radio Commun., Berlin, Germany, Sep. 2005, pp. 1125-1129.
[10] M. S. Al-Janabi, C. C. Tsimenidis, B. S. Sharif, and S. Y. Le Go, “Adaptive MCS selection in OFDM systems based on channel frequency coherence,” in Proc. Fifth Advanced Int. Conf. Telecommun., Venice, Italy, May 2009, pp. 177-182.
[11] H. Zhu and J. Wang, “Chunk-based resource allocation in OFDMA systems - part I: chunk allocation,” IEEE Trans. Commun., vol. 57, no. 9, pp. 2734-2744, Sep. 2009.
[12] B. Bai, W. Chen, Z. Cao, and K. B. Letaief, “Diversity-multiplexing tradeoff in OFDMA systems with coherence bandwidth splitting,” in Proc. IEEE Global Telecommun. Conf., Honolulu, HI, Nov. 2009, pp. 1-6.
[13] B. K. Engiz, C. Kurnaz, and H. Sezgin, “Approach for determining the optimum pilot placement in orthogonal frequency division multiplexing systems,” IET Commun., vol. 9, no. 15, pp. 1915-1923, Oct. 2015.
[14] W. Cao, X. Li, W. Hu, J. Lei, and W. Zhang, “OFDM reference signal reconstruction exploiting subcarrier-grouping-based multi-level Lloyd-Max algorithm in passive radar systems,” IET Radar, Sonar Navig., vol. 11, no. 5, pp. 873-879, May 2017.
[15] M. J. Gans, “A power-spectral theory of propagation in the mobile-radio environment,” IEEE Trans. Veh. Technol., vol. 21, no. 1, pp. 27-38, Feb. 1972.
[16] W. C. Jakes, Microwave Mobile Communications. New York: Wiley-IEEE Press, 1974.
[17] G. J. M. Janssen, P. A. Stigter, and R. Prasad, “Wideband indoor channel measurements and BER analysis of frequency selective multipath channels at 2.4, 4.75, and 11.5 GHz,” IEEE Trans. Commun., vol. 44, no. 10, pp. 1272-1288, Oct. 1996.
[18] N. Moraitis, A. Kanatas, G. Pantos, and P. Constantinou, “Delay spread measurements and characterization in a special propagation environment for PCS microcells,” in Proc. IEEE Int. Symp. Personal, Indoor Mobile Radio Commun., Lisbon, Portugal, Sep. 2002, pp. 1190-1194.
[19] F. J. B. Barros, R. D. Vieira, and G. L. Siqueira, “Relationship between delay spread and coherence bandwidth for UWB transmission,” in Proc. SBMO/IEEE MTT-S Int. Conf. Microw. Optoelectronics, Brasilia, Brazil, Jul. 2005, pp. 415-420.
[20] J. V. O. Goncalves and G. L. Siqueira, “Delay spread calculation from coherence bandwidth measurements on a OFDM based mobile communication system,” in Proc. SBMO/IEEE MTT-S Int. Microw. Optoelectronics Conf., Belem, Brazil, Nov. 2009, pp. 253-256.
[21] V. Sipal, D. Edwards, and B. Allen, “Subcarrier fading in UWB OFDM symbols,” in Proc. IEEE Int. Symp. Antennas Propag., Chicago, IL, Jul. 2012, pp. 1-2.
[22] G. Llano, J. Reig, and L. Rubio, “The UWB-OFDM channel analysis in frequency,” in Proc. IEEE Veh. Tech. Conf., Barcelona, Spain, Apr. 2009, pp. 1-4.
[23] W.-D.Wu, “A unified analytical framework for ultra-wideband communications,” Ph.D. dissertation, Inst. Commun. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan, R.O.C., 2008.
[24] A. Saleh and R. Valenzuela, “A statistical model for indoor multipath propagation,” IEEE J. Sel. Areas Commun., vol. 5, no. 2, pp. 128-137, Feb. 1987.
[25] E. P. C. Kao, An Introduction to Stochastic Processes. Belmont, CA: Duxbury Press, 1997.
[26] C.-C. Lee, W.-D. Wu, and C.-C. Chao, “Signal-to-interference-plus-noise ratio analysis for direct-sequence ultra-wideband systems,” in Proc. IEEE Wireless Commun. Network Conf., Hong Kong, Mar. 2007, pp. 1763-1767.
[27] P. Kyritsi, D. C. Cox, R. A. Valenzuela, and P. W. Wolniansky, “Correlation analysis based on MIMO channel measurements in an indoor environment,” IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 713-720, Jun. 2003.
[28] B. H. Fleury, “An uncertainty relation for WSS processes and its application to WSSUS systems,” IEEE Trans. Commun., vol. 44, no. 12, pp. 1632-1634, Dec. 1996.
[29] W. Q. Malik, “Spatial correlation in ultrawideband channels,” IEEE Trans. Wireless Commun., vol. 7, no. 2, pp. 604-610, Feb. 2008.