研究生: |
張恒中 Chang, Heng Chung |
---|---|
論文名稱: |
磁致伸縮型電感感測微傳感器之研究 The Study of the Magnetostrictive Type Inductive Sensing Micro Transducers |
指導教授: |
方維倫
Fang, Weileun |
口試委員: |
賴志煌
李昇憲 邢泰剛 賴志翔 謝哲偉 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 160 |
中文關鍵詞: | 逆磁致伸縮效應 、平面電感 、量規因子 、無線感測 、撓性 |
外文關鍵詞: | Inverse magnetostriction effect, Planar inductor, Gauge factor, Wireless sensing, Flexible |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出一新穎的磁致伸縮型電感感測微傳感器,具有受力結構與平面電感;其中,平面電感由磁致伸縮膜及平面線圈所構成,可同時耦合逆磁致伸縮效應與電感感測機制。當施加外界力量時,由於逆磁致伸縮效應,磁致伸縮膜本身會產生相應的導磁率變化,進而影響平面電感的電感值,透過電感值量測,便可得知電感值與力量變化之間的關係曲線。為了驗證磁致伸縮型電感感測微傳感器的可行性,本研究首先利用SOI製程平台製作包含了平面感測電感及矽質受壓薄膜的壓力傳感器以進行壓力靈敏度測試。從靈敏度的量測曲線顯示,此新型壓力傳感器的量規因子可達850左右;此外,藉由磁致伸縮膜的細長比設計,還可進一步有效調變壓力傳感器的性能。在定性量測方面,從磁化曲線發現,磁致伸縮膜的異向性場的確會隨著應力而改變,再度證實了逆磁致伸縮效應的發生。
磁致伸縮型電感感測微傳感器可視應用需求而做出相應調整,具有設計上的彈性。本研究先後採用CMOS-MEMS與MEPA製程平台,分別設計製作無線壓力感測陣列晶片以及撓性觸覺傳感器。基於CMOS-MEMS標準製程平台,壓力感測陣列晶片除了囊括多重感測範圍之外,憑藉著與讀取線圈間的互感耦合,也兼具無線傳輸能力。再者,透過三維鎳結構與三維PDMS結構之間的異質整合,磁致伸縮型電感感測觸覺傳感器在MEPA製程平台上不僅獲得初步成果,更具備了撓性應用的可能性。
This study presents a magnetostrictive type inductive sensing transducer which consisted of a planar coil, magnetic films, and a force supporting structure. As the force supporting structure deformed by an external load, the inverse magnetostriction effect would cause permeability changes of the magnetic films. Thus, the permeability changes as well as the external load can be detected by the inductance change of a planar inductor. To demonstrate the feasibility of the proposed transducer, pressure sensor designs which include the pressure supporting diaphragm, the planar coil and the patterns of magnetic films are fabricated and tested. Preliminary measurements show that the pressure sensor with 6 coil turns has sensitivities of 0.079%/kPa. In addition, based on the pattern design of the magnetic films, the gauge factor could be tuned from 55 to 852.
Moreover, the wireless sensing capability of the magnetostrictive type inductive sensing CMOS-MEMS pressure transducers are also demonstrated using the post CMOS process. Metal and dielectric layers of CMOS process are employed to form the planar coil and the pressure supporting diaphragm, respectively. An additional magnetostrictive film was patterned by the post CMOS process. This study further proposes a new process scheme to fabricate a polymer structure with embedded metal on the silicon substrate. Based on the proposed scheme, a magnetostrictive type flexible tactile transducer consisting of a polymer structure with embedded Ni coil winding is successfully exploited.
[1] Yole Development report, www.yole.fr
[2] www.iphonetricks.org
[3] weathersignal.com/blog
[4] www.intellisens.com
[5] global.rakuten.com
[6] www.omron.com
[7] www.panasonic.com
[8] X. Jingbo, Z. Yulong, J. Zhuangde, and S. Jian, “A monolithic multi-sensor for three-axis accelerometer, absoulte pressure and temperature,” IEEE SENSORS’06, pp. 1049-1052, 2006.
[9] W. P. Eaton and J. H. Smith, “Micromachined pressure sensors: Review and recent developments,” SPIE, 3046, pp. 30-41, 1997.
[10] K. N. Bhat and M. M. Nayak, “MEMS pressure sensors: An overview of challenges in technology and packaging,” Journal of Institute of Smart Structures and Systems, 2, pp. 39-71, 2013.
[11] G. T. A. Kovacs, Micromachined Transducers Sourcebook, McGraw-Hill, 1998.
[12] K. N. Bhat, “Reviews: Silicon micromachined pressure sensor,” Journal of the Indian Institute of Science, 87:1, pp. 115-131, 2007.
[13] www.st.com
[14] www.bosch.com
[15] www.nxp.com
[16] www.gesensing.com
[17] www.honeywell.com
[18] www.sensornor.com
[19] www.infineon.com
[20] www.analog.com
[21] www.sensirion.com
[22] www.epson.com
[23] O. N. Tufte, and E. L. Stelzer, “Piezoresistive properties of silicon diffused layers,” Journal of Applied Physics, 34, pp. 313-318, 1963.
[24] V. Musser, J. Suski, J. Goss and E. Obermeier, “Piezoresistive pressure sensors based on polycrystalline silicon,” Sensors and Actuators A, 28, pp. 113-132, 1991.
[25] D. Meyners, T. V. Hofe, M. Vieth, M. Ruhrig, S. Schmitt, and E. Quandt, “Pressure sensor based on magnetic tunnel junctions,” Journal of Applied Physics, 105, 07C914, 2009.
[26] M. Löhndorf, S. Dokupil, M. T. Bootsmannb, A. Malavé, M. Rührig, L. Bär, and E. Quandt, “Characterization of magnetostrictive TMR pressure sensors by MOKE,” Journal of Magnetism and Magnetic Materials, 316, e223-e225, 2007.
[27] A. B. Amor, T. Budde, and H. H. Gatzen, “A magnetoelastic microtransformer-based microstrain gauge,” Sensors and Actuators A, 129, pp. 41-44, 2006.
[28] X. Xu, M. Li, J. Hu, J. Dai, and W. Xia, “Strain-induced magnetoresistance for novel strain sensors,” Journal of Applied Physics, 108, 033916, 2010.
[29] E. G. Bakhoum, and M. H. M. Cheng, “High sensitivity inductive pressure sensor,” IEEE Transactions on Instrumentation and Measurement, 60, pp. 2960-2966, 2011.
[30] W. Yang, Q. Yang, R. Yan, W. Zhang, X. Yan, F. Gao, and W. Yan, “Dynamic response of pressure sensor with magnetic liquids,” IEEE Transactions on Applied Superconductivity, 20, pp. 1860-1863, 2010.
[31] P. J. Chen, S. Saati, R. Varma, M. S. Humayun, and Y. C. Tai, “Implantable flexible coiled wireless intraocular pressure sensor,” IEEE MEMS’09, pp. 244-247, 2009.
[32] S. L. Martínez, R. Giannetti, J. L. R. Marrero, and B. Tellini, “Design of a system for continuous intraocular pressure monitoring,” IEEE Transactions on Instrumentation and Measurement, 54, pp. 1534-1540, 2005.
[33] M. K. Jian and C. A. Grimes, “A wireless magnetoelastic micro-sensor array for simultaneous measurement of temperature and pressure,” IEEE Transactions on Magnetics, 37, pp. 2022-2024, 2001.
[34] https://en.wikipedia.org/wiki/Magnetostriction
[35] A. G. Olabi, and A. Grunwald, “Design and application of magnetostrictive materials,” Materials and Design, 29, pp. 469-483, 2008.
[36] B. D. Cullity and C. D. Graham, Introduction to Magnetic Materials, John Wiley & Sons, Inc., 2009.
[37] C. S. Schneider, P. Y. Cannell, and K. T. Watts, “Magnetoelasticity for large stresses,” IEEE Transactions on Magnetics, 28, pp. 2626-2631, 1992.
[38] K. Yamamoto, S. Takada, and T. Sasaki, “Change of the magnetization due to a change of stress after demagnetization in amorphous ribbon,” IEEE Transactions on Magnetics, 31, pp. 3778-3780, 1995.
[39] M. J. Sablik, “A model for asymmetric in magnetic property behavior under tensile and compressive stress in steel,” IEEE Transactions on Magnetics, 33, pp. 3958-3960, 1997.
[40] http://encyclopedia2.thefreedictionary.com/Magnetostrictive+Materials
[41] R. C. O’Handley, “Magnetostriction of transition-metal metalloid glasses: Temperature dependence,” Physical Review B, 18, pp. 930-938, 1978.
[42] http://www.sensorsmag.com/sensors/pressure/fundamentals-pressure-sensor-technology-846
[43] S. P. Timoshenko, and S. Woinowsky-Krieger, Theory of Plates and Shells, McGraw Hill, 1989.
[44] H. Bau, N. F. DeRooij, and B. Kloeck, Sensors: A Comprehensive Survey, Wiley-VCH, 1994.
[45] A. Ghosh, S. Roy, and C. K. Sarkar, “Design and simulation of MEMS based piezoresistive pressure sensor for enhanced sensitivity,” International Conference on Energy Efficient Technologies for Sustainability, pp. 918-923, 2013.
[46] T. Mizoguchi, T. Sato, M. Sahashi, M. Hasegawa, H. Tomita, and A. Sawabe, Planar Magnetic Element, USPTO, 5583474.
[47] S. Musunuri, “Design issues for monolithic DC-DC converters,” IEEE Transactions on Power Electronics, 20, pp. 639-649, 2005.
[48] D. Wang, C. Nordman, Z. Qian, J. M. Gaughton, and J. Myers, “Magnetostriction effect of amorphous CoFeB thin films and application in spin-dependent tunnel junctions,” Journal of Applied Physics, 97, 10C906, 2005.
[49] K. Kawabe, H. Koyama, and K. Shirae, “Planar inductor,” IEEE Transactions on Magnetics, 20, pp. 1804-1806, 1984.
[50] H. Baltes, O. Brand, G. K. Fedder, C. Hierold, J. Korvink, and O. Tabata, CMOS MEMS: Advanced Micro and Nanosystems. Vol. 2, John Wiley & Sons Inc., 2005.
[51] G. K. Fedder, “CMOS-based sensors,” IEEE SENSORS’05, pp. 125-128, 2005.
[52] M. H. Tsai, C. M. Sun, Y. C. Liu, C. W. Wang, and W. Fang, “Design and application of a metal wet-etching post-process for the improvement of CMOS-MEMS capacitive sensors,” Journal of Micromechanics and Microengineering, 19, 105017, 2009.
[53] C. L. Cheng, H. C. Chang, C. I. Chang, Y. T. Tuan, and W. Fang, “Mechanical force-displacement transduction structure for performance enhancement of CMOS-MEMS pressure sensor,” IEEE MEMS’14, pp. 757-760, 2014.
[54] C. M. Sun, C. W. Wang, M. H. Tsai, H. S. Hsieh, and W. Fang, “Monolithic integration of capacitive sensors using a double-side CMOS-MEMS post process,” Journal of Micromechanics and Microengineering, 19, 015023, 2009.
[55] http://pdf1.alldatasheet.com/datasheet-pdf/view/556827/HONEYWELL/SX30ALP.html
[56] K. Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards and Identification, John Wiley & Sons Ltd., 2003.
[57] S. Wattanasarn, K. Noda, K. Matsumoto, and I. Shimoyama, “3D flexible tactile sensor using electromagnetic induction coils”, IEEE MEMS’12, pp. 488-491, 2012.
[58] Q. Ramadan, V. D. Samper, D. P. Puiu, and C. Yu, “Fabrication of three-dimensional magnetic microdevices with embedded microcoils for magnetic potential concentration”, Journal of Microelectromechanical Systems, 15, No. 3, pp. 624-638, 2006.
[59] C. W. Lin, C. W. Chang, Y. T. Lee, R. Chen, Y. C. Chang, and W. Fang, “Glass microprobe with embedded silicon vias for 3D integration”, IEEE MEMS’09, pp. 200-203, 2009.
[60] C. H. Ahn, and M. G. Allen, “Micromachined planar inductors on silicon wafers for MEMS applications”, IEEE Transactions on Industrial Electronics, 45, No. 6, pp. 866-876, 1998.
[61] X. Yu, M. Kim, F. Herrault, C. H. Ji, J. Kim, and M. G. Allen, “Silicon-embedded 3D toroidal air-core inductor with through-wafer interconnect for on-chip intergration”, IEEE MEMS’12, pp. 325-328, 2012.
[62] B. Fernández, and J. Kubby, “Design, processing and materials for large-stroke actuators”, SPIE, 6467, 64670T, 2007.
[63] K. Xiang, G. Huang, J. Zheng, X. Wang, G. Li, and J. Huang, “Accelerated thermal ageing studies of polydimethylsiloxane (PDMS) rubber,” Journal of Polymer Research, 19:9869, 2012.
[64] D. R. Gillum, Industrial Pressure, Level, and Density Measurement, ISA, 2009.
[65] http://www.all-electronics.de/bilder/34619/Magnetische-Induktion-oder-magnetische-Resonanz
[66] A. Karalis, J. D. Joannopoulos and M. Soljacic, “Efficient wireless non-radiative mid-range energy transfer,” Science Express, 112, No. 323, pp. 34-48, 2008.
[67] S. L. Ho, J. Wang, W. N. Fu, and M. Sun, “A comparative study between novel Witricity and traditional inductive magnetic coupling in wireless charging”, IEEE Transactions on Magnetics, 47, pp. 1522-1525, 2011.
[68] http://www.gorferay.com/metallic-antenna-environment/
[69] C. W. Lin, C. P. Hsu, H. A. Yang, W. C. Wang, and W. Fang, “Implementation of SOG MEMS devices with embedded through-wafer silicon vias using glass reflow process for wafer-level packaging and 3D chip integration,” Journal of Micromechanics and Microengineering, 18, 025018, 2008.
[70] Y. T. Lee, C. W. Lin, C. M. Lin, S. R. Yeh, Y. C. Chang, and W. Fang, “A pseudo-3D glass microprobe array: glass microprobe with embedded silicon for alignment and electrical interconnection during assembly,” Journal of Micromechanics and Microengineering, 20, 025014, 2010.
[71] R. M. Haque and K. D. Wise, “A 3D implantable microsystem for intraocular pressure monitoring using a glass-in-silicon reflow process,” IEEE MEMS’11, pp. 995-998, 2011.
[72] C. S. Smith, “Piezoresistance effect in germanium and silicon,” Physical Review, 94, pp. 42-49, 1954.
[73] O. N. Tufte, and E. L. Stelzer, ”Piezoresistive properties of silicon diffused layers,” Journal of Applied Physics, 34, pp. 313-318, 1963.
[74] Y. Kanda, “Graphical representation of piezoresistance coefficient in silicon,” IEEE Transactions on Electron Devices, ED-29, pp. 64-70, 1982.
[75] S. M. Sze, Semiconductor Sensor, John Wiley & Sons Inc., 1994.
[76] E. R. Peake, A. R. Zias, and J. V. Egan, “Solid-state digital pressure devices,” IEEE Transactions on Electron Devices, ED-16, No. 19, pp. 870-876, 1969.
[77] Y. Kanda and A. Yasukawa, “Optimum design considerations for silicon piezoresistive pressure sensors,” Sensors and Actuators A, 62, pp. 539-542, 1997.
[78] K. Lee and K. Wise, “SENSIM: A simulation program for solid-state pressure sensors,” IEEE Transactions on Electron Devices, ED-29, pp. 34-41, 1982.
[79] C. K. Ghaddar, and J. R. Gilbert, “On the modeling of the Wheatstone-bridge piezoresistive pressure sensor: A finite- element-based approach,” ASME International Mechanical Engineering Congress and Exposition (IMECE'99), pp. 195-200, 1999.
[80] L. Lin, H. C. Chu, and Y. W. Lu, “A simulation program for the sensitivity and linearity of piezoresistive pressure sensors,” Journal of Microelectromechanical Systems, 8, No. 4, pp. 514-522, 1999.
[81] Y. H. Zhang, C. Yang, Z. H. Zhang, H. W. Lin, L. T. Liu, and T. L. Ren, “A novel pressure microsensor with 30µm-thick diaphragm and meander-shaped piezoresistors partially distributed on high-stress bulk silicon region,” IEEE Sensors Journal, 7, No. 12, pp. 1742-1748, 2007.
[82] S. M. Shaby, and A. V. Juliet, “Performance analysis and validation of sensitivity of piezoresistive MEMS pressure sensor,” IEEE Recent Advances in Intelligent Computational Systems (RAICS’11), pp. 692-695, 2011.
[83] A. Louia, F. T. Goerickeb, T. V. Rattoa, J. Leeb, B. R. Harta, and W. P. Kingb, “The effect of piezoresistive microcantilever geometry on cantilever sensitivity during surface stress chemical sensing,” Sensors and Actuators A, 147, pp. 516-521, 2008.
[84] K. Naeli, and O. Brand, “Cantilever sensor with stress-concentrating piezoresistor design,” IEEE SENSORS’05, pp. 592-595, 2005.
[85] R. Amarasinghe, D. V. Dao, V. T. Dau, B. T. Tung and S. Sugiyama, “Sensitivity enhancement of piezoresistive micro acceleration sensors with nanometer stress concentration regions on sensing elements,” Transducers’09, pp. 1333-1336, 2009.
[86] Y. Kebbati, and M. Boujrharhe, ”Design optimization in SOI-based high sensitivity piezoresistive cantilever devices,” IEEE Design and Technology of Integrated Systems in Nanoscale Era (DTIS’10), pp. 1-5, 2010.
[87] S. C. Gong, “Effect of pressure sensor dimensions on process window of membrane thickness,” Sensors and Actuators A, 112, pp. 286-290, 2004.
[88] L. Lin, H. C. Chu, and Y. W. Lu, “A simulation program for the sensitivity and linearity of piezoresistive pressure sensors,” Journal of Microelectromechanical Systems, 8, No. 4, pp. 514-522, 1999.
[89] S. Aravamudhan, and S. Bhansali, “Reinforced piezoresistive pressure sensor for ocean depth measurements,” Sensors and Actuators A, 142, pp. 111-117, 2008.
[90] S. Marco, J. Samitier, O. Ruiz, J. R. Morante, and J. Esteve, “High-performance piezoresistive pressure sensors for biomeial applications using very thin structured membranes,” Measurement Science and Technology, 7, pp. 1195-1203, 1996.
[91] T. N. Jackson, M. A. Tischler, and K. D. Wise, “An electrochemical P-N junction etch-stop for the formation of silicon microstructures,” Electron Device Letters, 2, pp. 44-45, 1981.
[92] B. Folkmer, P. Steiner, and W. Lang, “A pressure sensor based on a nitride membrane using single crystalline piezoresistors,” Transducers’95, 2, pp. 574-577, 1995.
[93] S. Sugiyama, K. Shimaoka, and O. Tabata, “Surface micromachined micro-diaphragm pressure sensors,” Transducers’91, pp. 188-191, 1991.
[94] C. T. Peng, J. C. Lin, C. T. Lin, and K. N. Chiang, “Performance and package effect of a novel piezoresistive pressure sensor fabricated by front-side etching technology,” Sensors and Actuators A, 119, pp. 28-37, 2005.
[95] A. A. Barlian, W. T. Park, J. R. Mallon, A. J. Rastegar, and B. L. Pruitt, “Review: Semiconductor piezoresistance for microsystems,” Proceedings of the IEEE, 97, No. 3, pp. 513-552, 2009.
[96] http://www.ise.com
[97] O. N. Tufte and E. L. Stelzer, “Piezoresistive properties of silicon diffused layers,” Journal of Applied Physics, 34, No. 2, 1963.
[98] Y. Kanda, “A graphical representation of the piezoresistance coefficient in silicon,” IEEE Transaction on Electron Devices, ED-29, No. 1, 1982.
[99] http://ecee.colorado.edu/~bart/book/book/chapter2/ch2_7.htm
[100] http://www.coventor.com/coventorware.html