簡易檢索 / 詳目顯示

研究生: 茒彥植
Maw, yen-chih
論文名稱: 動力傳播方程式的Strichartz估計
Strichartz estimates for the Kinetic Transport equation
指導教授: 江金城
Jiang, Jin-Cheng
口試委員: 蔡東和
Tsai, Dong-Ho
李明憶
Lee, Ming-Yi
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 31
中文關鍵詞: 動力傳播方程式估計
外文關鍵詞: Kinetic Transport equation, Strichartz estimates
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討動力方程式的Strichartz估計,有時候我們不容易看出滿足估計的區域,盡量找出最大滿足此估計的最大區域,再使用插值方法和動力方程式的特性去證明此區域滿足此估計。


    The prupose of this paper is to give more details to the proof of the results in Ovcharov [12].

    1 Settings and Definitions . . . . . . . . . . . . . . 4 2 Some properties for kinetic transport equation . . . 5 3 Duality and $TT^∗$ method . . . . . . . . . . . . . . 7 4 Preparation for the main theorem . . . . . . . . . . 13 5 Main theorem . . . . . . . . . . . . . . . . . . . . 26 6 Reference . . . . . . . . . . . . . . . . . . . . . . 30

    [1] A. Benedek and R. Panzone, The space Lp, with mixed norm, Duke Math. J., 28 (1961),pp. 301–324
    [2] C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic
    Press, Boston, MA, 1988.
    [3] J. Bergh and J. Lo"fstro"m , Interpolation Spaces. An Introduction, Grundlehren Math.
    Wiss. 223, Springer-Verlag, Berlin, New York, 1976
    [4] N. Bournaveas, V. Calvez, S. Guti'errez, and B. Perthame, Global existence for a kinetic
    model of chemotaxis via dispersion and Strichartz estimates, Comm. Partial Differential Equations, 33 (2008), pp. 79–95.
    [5] F. Castella and B. Perthame, Estimations de Strichartz pour les'equations de transport
    cin´etique, C. R. Acad. Sci. Paris S'er. I Math., 322 (1996), pp. 535–540.
    [6] E. Cordero and F. Nicola, Some new Strichartz estimates for the Schrodinger equation, J.
    Differential Equations, 245 (2008), pp. 1945–1974.
    [7] D. Foschi, Inhomogeneous Strichartz estimates, J. Hyperbolic Differ. Equ., 2 (2005), pp. 1–24.
    [8] Z. Guo and L. Peng, Endpoint Strichartz estimate for the kinetic transport equation in one
    dimension, C. R. Math. Acad. Sci. Paris, 345 (2007), pp. 253–256.
    [9] L. Hormander , Estimates for translation invariant operators in Lp spaces, Acta Math., 104
    (1960), pp. 93–140.
    [10] T. Kato, An Lq,r-theory for nonlinear Schrodinger equations, in Spectral and Scattering Theory and Applications, Adv. Stud. Pure Math. 23, Math. Soc. Japan, Tokyo, 1994,pp. 223–238.
    [11] M. Keel and T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), pp. 955–980.
    [12] E. Ovcharov, Strichartz estimates for the kinetic transport equation, SIAM J. Math. Anal. 43 (2011) no.3, pp. 1282-1310.
    [13] E. Y. Ovcharov, Global Regularity of Dispersive Equations and Strichartz Estimates, Ph.D.
    Thesis, University of Edinburgh, 2009.
    [14] E. Y. Ovcharov, Counterexamples to Strichartz estimates for the kinetic transport equation
    based on Besicovitch sets, Nonlinear Anal., 74 (2011), pp. 2515–2522.
    [15] B. Perthame, Mathematical tools for kinetic equations, Bull. Amer. Math. Soc. (N.S.), 41
    (2004), pp. 205–244.
    [16] S. Selberg, Lecture notes on nonlinear wave equations, Personal web site, http://www.math.
    ntnu.no/~sselberg/ (2001).
    [17] R. J. Taggart, Inhomogeneous Strichartz estimates, Forum Math., 22 (2010), pp. 825–853.
    [18] M. Vilela, Inhomogeneous Strichartz estimates for the Schr¨odinger equation, Trans. Amer.
    Math. Soc., 359 (2007), pp. 2123–2136.

    QR CODE