研究生: |
沈煒智 Wei-Chih Shen |
---|---|
論文名稱: |
非接觸型切換式直流電源供應器之研發 Development of a Noncontact Switching Mode DC Power Supply |
指導教授: |
潘晴財
Ching-Tsai Pan 謝振中 Jenn-Jong Shieh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 118 |
中文關鍵詞: | 弱耦合感應 、最大輸出功率 、非接觸式 |
外文關鍵詞: | loosely coupled, maximum output power, noncontact |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
弱耦合感應電力傳輸系統(Loosely Coupled Inductive Power Transfer System, LCIPTS),主要是經由磁場耦合將電能自一電源傳輸自另一可動之負載,而無需直接透過電力線連接,故具有避免產生火花或觸電危險的優點。然而由於國內有關非接觸型電力傳輸技術之研發與應用仍相當有限,有鑑於其未來許多特殊場合之應用潛力又相當廣泛,因此本論文主要之研究目的是針對弱耦合感應電力傳輸系統之優點,將之應用於切換式直流電源供應器上,作一完整且深入的探討。
本論文主要貢獻有四,第一,就本論文所探討的架構來說,弱耦合感應電力傳輸系統共有三個可工作於最小輸入伏安容量的頻率,即WL、Wo及WH。第二,利用串聯與並聯共振頻率相等情況下將 及 等甚為複雜的公式,導演出一較為簡單的公式,以方便分析與設計用。第三,利用吾人所提在交流輸出情況下不同操作模式的電路特性,可以將控制電路都作在弱耦合變壓器的一次側,更確切符合其一、二次側鐵心繞組可分離式的特性。第四,吾人將此複雜的技術歸納出一套簡易的設計準則,可以根據此準則很方便地設計非接觸型切換式直流電源供應器的電路參數。最後並實際製作一雛型電路以驗證所提非接觸型切換式直流電源供應器之可行性。
Loosely coupled inductive power transfer system is designed to deliver power efficiently from a stationary primary source to one movable secondary load over relatively large air gap via magnetic coupling without wires and connectors. It has advantages of avoiding the dangers of sparking and the risk of electrical shocks. However, the research and development about this technology is quite limited at present in this country. Considering its potential development and applications in the future, it is vary worthy to study and explore the fundamental principle and design guideline of a noncontact switching mode DC power supply.
The contributions of this thesis may be summarized as follows. First, three resonant frequencies, namely , and are obtained which can achieve minimum input volt-ampere capacity of the loosely coupled inductive power transfer system as well as maximum output power. Second, in order to analyze and design this system more efficiently, by assuming that the series resonant frequency is equal to the parallel resonant frequency, simple analytic formulas of and are obtained. Third, according to characteristics of different operation modes in AC output situation, output voltage or current can be controlled from the primary side of the transformer. Fourth, a simple design procedure and some analytic formulas are proposed to simplify the design process. Finally, a prototype is also constructed to verify the feasibility of the proposed theory.
[1] Z. Bingyi, L. Hongbin, Z. Yisong, Y. Yong, and F. Guihong, “Contactless electrical energy transmission system using separable transformer,” IEEE ICEMS’05, vol. 3, 2005, pp. 1721-1724.
[2] Y. Jang, and M. M. Jovanovic, “A contactless electrical energy transmission system for portable-telephone battery chargers,” IEEE Transactions on Industrial Electronics, vol. 50, 2003, pp. 520–527.
[3] H. Sakamoto, and K. Harada, “A novel circuit for non-contact charging through electro-magnetic coupling,” IEEE PESC'92, vol. 1, 1992, pp. 168-174.
[4] R. J. Wai, R. Y. Duan, J. D. Lee, and L. W. Liu, “High-efficiency fuel-cell power inverter with soft-switching resonant technique,” IEEE Transactions on Energy Conversion, vol. 20, 2005, pp. 485–492.
[5] H. Sakamoto, and K. Harada, “A novel high power converter for non-contact charging with magnetic coupling,” IEEE Transactions on Magnetics, vol. 30, 1994, pp. 4755-4757.
[6] C. G. Kim, D. H. Seo, J. S. You, J. H. Park, and B. H. Cho, “Design of a contactless battery charger for cellular phone,” IEEE APEC’00, vol. 2, 2000, pp. 769-773.
[7] Z. Bingyi, L. Hongbin, and F. Guihong, “Study of the separable transformer used in contactless electrical energy transmission system,” IEEE/PES Transmission and Distribution Conference and Exhibition: Asia and Pacific, 2005, pp. 1-5.
[8] T. Kojiya, F. Sato, H. Matsuki and T. sato,“Construction of non-contacting power feeding system to underwater vehicle utilizing electro magnetic induction,” Europe Oceans, vol. 3, 2005, pp. 709-712.
[9] D. A. G. Pedder, A. D. Brown, and J. A. Skinner, “A contactless electrical energy transmission system,” IEEE Transactions on Industrial Electronics, vol. 46, 1999, pp. 23-30.
[10] N. H. Kutkut, and K. W. Klontz, “Design considerations for power converters supplying the SAE J-1773 electric vehicle inductive coupler,” IEEE APEC’97, vol. 2, 1997, pp. 841-847.
[11] C. S. Wang, G. A. Covic, and O. H. Stielau, “Power transfer capability and bifurcation phenomena of loosely
coupled inductive power transfer systems,” IEEE Transactions on Industrial Electronics, vol. 51, 2004, pp. 148-157.
[12] C. S. Wang, G. A. Covic, and O. H. Stielau, “General stability criterions for zero phase angle controlled loosely coupled inductive power transfer systems,” IEEE IECON’01, vol. 2, 2001, pp. 1049-1054.
[13] C. S. Wang, G. A. Covic, and O. H. Stielau, “Investigating an LCL load resonant inverter for inductive power transfer applications,” IEEE Transactions on Power Electronics, vol. 19, 2004, pp. 995-1002.
[14] C. S. Wang, O. H. Stielau, and G. A. Covic, “Load models and their application in the design of loosely coupled inductive power transfer systems,” IEEE PowerCon’00, vol. 2, 2000, pp. 1053-1058.
[15] C. S. Wang, O. H. Stielau, and G. A. Covic, “Design considerations for a contactless electric vehicle battery charger,” IEEE Transactions on Industrial Electronics, vol. 52, 2005, pp. 1308-1314.
[16] H. Miura, S. Arai, F. Sato, H. Matsuki, and T. Sato, “A synchronous rectification using a digital PLL technique for contactless power supplies,” IEEE Transactions on Magnetics, vol. 41, 2005, pp. 3997-3999.
[17] M. Ryu, H. Cha, Y. Park, and J. Baek, “Analysis of the contactless power transfer system using modelling and analysis of the contactless transformer,” IEEE IECON’05, 2005, pp. 1036-1042.
[18] Y. S. Kong, E. S. Kim, I. G. Hwang and H. K. Lee, “High-efficiency series-parallel resonant converter for the non-contact power supply,” IEEE APEC’05, vol. 3, 2005, pp. 1496 – 1501.
[19] H. Abe, H. Sakamoto, and K. Harada, “A noncontact charger using a resonant converter with parallel capacitor of the secondary coil,” IEEE Transactions on Industry Applications, vol. 36, 2000, pp. 444-451.
[20] H. Abe, H. Sakamoto, and K. Harada, “Load voltage stabilization of noncontact energy transfer using three resonant circuit,” IEEE PCC’02, vol. 2, 2002, pp. 466-471.
[21] A. Esser, “Contactless charging and communication for electric vehicles,” IEEE Industry Applications Magazine, vol. 1, 1995, pp. 4-11.
[22] C. G. Kim, D. H. Seo, J. S. You, J. H. Park, and B. H. Cho “Design of a contactless battery charger for cellular phone,” IEEE Transactions on Industrial Electronics, vol. 48, 2001, pp. 1238-1247.
[23] B. Choi, J. Nho, H. Cha, T. Ahn, and S. Choi, “Design and implementation of low-profile contactless battery charger using planar printed circuit board windings as energy transfer device,” IEEE Transactions on Industrial Electronics, vol. 51, 2004, pp. 140-147.
[24] B. Yang, F. C. Lee, R. Cheng, and A. J. Zhang, “LLC resonant converter for front end DC/DC conversion,” IEEE APEC’02, vol. 2, 2002, pp. 1108–1112.
[25] G. C. Hsieh, and J. C. Hung, “Phase-locked loop techniques-a survey,” IEEE Transactions on Industrial Electronics, vol. 43, 1996, pp. 609-615.
[26] A. Okuno, L. Gamage, and M. Nakaoka, “Letters to the editor,” IEEE Transactions on Industrial Electronics, vol. 48, 2001, pp. 475-477.
[27] H. Ayano, K. Yamamoto, N. Hino, and I. Yamato, “Highly efficient contactless electrical energy transmission system,” IEEE IECON’02, vol. 2, 2002, pp. 1364-1369.
[28] N. Mohan, T. M. Undeland, and W. P. Robbins, Power electronics: converters, application and design, John Wiley and Sons Inc., 1989.
[29] 陳柏燊, “非接觸供電變壓器繞線和形狀之技術分析” , 中華民國第二十六屆電力工程研討會,2005,pp. 17-21.
[30] 高進發,「新型單相電源轉換系統控制策略之研製」,清華大學碩士論文,八十九年七月。
[31] 廖益弘,「壓電式螢光燈電子安定器之研製」,清華大學碩士論文,八十九年七月。
[32] 梁適安編譯,「高頻交換式電源供應器原理與設計」,第二版,全華科技圖書股份有限公司,八十四年五月。