簡易檢索 / 詳目顯示

研究生: 潘奕達
Pan, Yi-Ta
論文名稱: 以吹氣捕捉前處理系統量測寬濃度範圍的氨及其亨利常數
Purge-and-Trap preconcentrator system for the determination of ammonia in wide range of concentrations and its Henry's law constant
指導教授: 吳劍侯
Wu, Chien-Hou
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 61
中文關鍵詞: 亨利常數吹氣捕捉離子層析
外文關鍵詞: Ammonia, Henry’s law constant, Purge and trap, Ion chromatography
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氨的吹氣捕捉前處理系統 ( Purge-and-trap preconcentrator ),結合了吹氣捕捉以及氨脫除 (Ammonia stripping)技術,是用來將氨與樣品中複雜基質有效分離的方法,之後再使用鄰苯二甲醛 (ortho- Phthaldialdehyde, OPA)螢光衍生以及離子層析儀 ( Ion chromatography)測量氨的濃度。 本論文的主要目的是將吹氣捕捉系統,在相同的吹除效率之下,增加其適用的濃度線性範圍,並且用此前處理系統在吹氣瓶中的氣液兩相間傳輸的模型,測量在不同溫度以及不同濃度氫氧化鈉下氨的亨利常數。 為增加濃度線性範圍所需探討的吹氣捕捉系統吹除效率變因有:超音波震盪的影響、吹除時間、捕捉液體積、捕捉液的種類以及濃度等。 經增廣濃度範圍後的系統可以將適用濃度範圍提升到20 ppb ~ 100 ppm,使得本系統可以處理寬濃度範圍氨的樣品。 此外,本研究可直接測量吹氣瓶中的氨來證實系統的質量守恆。 並且利用吹氣瓶以及捕捉瓶測量亨利常數,與理論值和文獻值比較都有很一致的趨勢,表示本系統不但可以應用在寬濃度氨的樣品前處理,還能很準確的測量氨的亨利常數。


    The ammonia purge-and-trap (P&T) preconcentrator system is a device to separate ammonia from complicated matrices, which combining the concept of purge-and-trap and ammonia stripping. After the P&T pretreatment, the collected sample from trap vessel would be analyzed by ortho- Phthaldialdehyde (OPA) fluoresce derivatization or ion chromatography. The main research purpose of this thesis is to widen the P&T preconcentrator’s linear range under the same efficiency to previous work. And to measure ammonia’s Henry’s law constant under different temperature and different sodium hydroxide concentration. To extend the linear range under the same efficiency, the following parameters should take into account:affect of ultrasound, purging time, volume of trap solution, the composition of trap solution and its concentration. The advanced system broaden its linear range about 3 order to 20 ppb~100 ppm, make it possible to deal with wide ammonia concentration samples. Furthermore, directly ammonia measurement in the purge vessel can verify this system is keep mass balance. Both measurements of ammonia’s KH from purge vessel and trap vessel are very close to the theoretical value and the reference ones. Therefore, this system can not only apply to the pretreatment of wide ammonia concentration samples but also measure ammonia’s KH precisely.

    目錄 中文摘要………………………………………………………………...…………….I 英文摘要……………………………………………………………………………...II 誌謝…………………………………………………………………………………..III 目錄…………………………………………………………………………………..IV 圖目錄………………………………………………………………………………..VI 表目錄……………………………………………………………………….……...VII 附錄目錄………………………………………………………………….……......VIII 第一章 前言………………………………………...…………………....…………1 1-1 簡介……………………………………………………………………………..1 1-2 研究目的……………………………………………….……………………….1 1-3 文獻回顧………………………………………….…………………………….3 1-3-1 氨的基本性質………………………………………………………….3 1-3-2 液相氨的分析方法…………………………………………………….5 1-3-3 亨利定律………………………………….…………………………..12 1-3-4 吹氣捕捉系統模式探討…………………………………………...…16 第二章 實驗……………………………………………………...……………..…22 2-1儀器設備……………..……………………………………...………………..…22 2-1-1 離子層析儀…………………………...……………………………..…22 2-1-2 螢光光譜儀………………………...…………………………..………23 2-1-3 實驗器材…………………………...…………………………..………24 2-2 實驗藥品…………………………...………………………...………..………24 2-2-1 分析方法與前處理系統所需之藥品..…………….…………..………24 2-2-2 藥品配置…………………………...…………………………..………25 2-3 前處理系統…………………………...………………………………..………27 2-4 前處理系統吹除效率的實驗流程…………………………...………..………29 第三章 結果與討論…………………………...………..………………………….30 3-1 線性範圍提升之參數探討………...………..…………………………………30 3-1-1 吹氣瓶測量條件……………………………...………..………………30 3-1-2 吹氣瓶吹氣時間與吹除效率………………...………..………………31 3-1-3 超音波震盪與吹氣瓶吹除效率……...………..………………………32 3-1-4 捕捉液體積與捕捉效率……………...………..………………………32 3-1-5 捕捉液成分與捕捉效率……………...………..………………………33 3-1-6 線性範圍的提升……………...………..………………………………36 3-2 亨利常數…………………………...……….…………………………………37 3-2-1 吹氣捕捉系統與亨利常數的式子推導...………..……………………37 3-2-2 313K 10 M NaOH 下的亨利常數..…………….......…………………40 3-2-3 313K 1 M NaOH 下的亨利常數..…………….......…………………..42 3-2-4 0.1 M NaOH下利用吹氣瓶量測氨的亨利常數…...…………………44 3-2-5 0.1 M NaOH下利用捕捉瓶量測氨的亨利常數…………...……..…..45 3-2-6 系統的質量守恆…………………………...………..…………………47 3-2-7 實驗值與理論值及文獻值的比較…...………..………………………49 3-2-8 吸附速率常數與速率常數…...………..………………………………52 3-2-9 真實樣品……………………...………..………………………………53 第四章 結論與展望…………………………...………..………………………….54 參考文獻…………………………...………..……………………………………….55 附錄……………………...………..……………………………………………………i

    參考文獻

    Journal Articles
    Alberty, R. A. Standard Transformed Formation Properties of Carbon Dioxide in Aqueous Solutions at Specified pH. J. Phys. Chem. 1995, 99, 11028-11034.

    Amornthammarong, N.; Zhang, J.-Z. Shipboard Fluorometric Flow Analyzer for High-resolution Underway Measurement of Ammonium in Seawater. Anal. Chem. 2008, 80, 1019-1026.

    Aznar, M.; Arroyo, T. Analysis of Wine Volatile Profile by Purge-and-Trap-Gas Chromatography-Mass Spectrometry - Application to the Analysis of Red and White Wines from Different Spanish Regions J. Chromatogr. A 2007, 1165, 151–157.

    Campillo, N.; Vi□as, P.; L□pez-Garc□a, I.; Aguinaga, N.; Hern□ndez-C□rdoba, M. Determination of Volatile Halogenated Organic Compounds in Soils by Purge-and-Trap Capillary Gas Chromatography with Atomic Emission Detection. Talanta 2004, 64, 584-589.

    Chung, M. Y.; Muthana, S.; Paluyo, R. N.; Hasson, A. S. Measurements of Effective Henry's Law Constants for Hydrogen Peroxide in Concentrated Salt Solutions. Atmos. Environ. 2005, 39, 2981–2989.

    Clegg, S. L.; Brimblecombet, P. Solubility of Ammonia in Pure Aqueous and Multicomponent Solutions. J. Phys. Chem. 1989, 93, 7237-7248.

    Cofer, W. R.; Collins, V. G.; Talbot, R. W. Improved Aqueous Scrubber for Collection of Soluble Atmospheric Trace Gases. Environ. Sci. Technol. 1985, 19, 557-560.

    Dasgupta, P. K.; Dong, S. Solubility of Ammonia in Liquid Water and Generation of Trace Levels of Standard Gaseous Ammonia. Atmos. Environ. 1986, 20, 565-570.

    Davidovits, P.; Kolb, C. E.; Williams, L. R.; Jayne, J. T.; Worsnop, D. R. Mass Accommodation and Chemical Reactions at Gas-Liquid Interfaces. Chem. Rev. 2006, 106, 1323-1354.

    Eddy, F. B. Ammonia in Estuaries and Effects on Fish. J. Fish Biol. 2005, 67, 1495-1513.

    Edwards, T. J.; Maurer, G.; Newman, J.; Prausnitz, J. M. Vapor-Liquid Equilibria in Multicomponent Aqueous Solutions of Volatile Weak Electrolytes. AlChE J. 1978, 24, 966-976.

    Erisman, J. W.; Bleeker, A.; Galloway, J.; Sutton, M. S. Reduced Nitrogen in Ecology and The Environment. Environ. Pollut. 2007, 150, 140-149.

    Gamisans, X.; Sarra, M.; Lafuente, F. J. Gas Pollutants Removal in a Single- and Two-Stage Ejector-Venturi Scrubber. J. Hazard. Mater. 2002, 90, 251-266.

    Genfa, Z.; Dasgupta, P. K. Fluorometric Measurement of Aqueous Ammonium Ion in a Flow Injection System. Anal. Chem. 1989, 61, 408-412.

    Hales, J. M.; Drewes, D. R. Solubility of Ammonia in Water at Low Concentrations. Atmos. Environ. 1978, 13, 1133-1147.

    Hanson, D.; Kosciuch, E. The NH3 Mass Accommodation Coefficient for Uptake onto Sulfuric Acid Solutions. J. Phys. Chem. A 2003, 107, (13), 2199-2208.

    Hilal, S. H.; Ayyampalayam, S. N.; Carreira, L. A. Air-Liquid Partition Coefficient for a Diverse Set of Organic Compounds: Henry's. Law Constant in Water and Hexadecane. Environ. Sci. Technol. 2008, 42, 9231-9236.

    Howard-Reed, C.; Corsi, R. L. Mass Transfer of Volatile Organic Compounds from Drinking Water to Indoor Air: The Role of Residential Dishwashers. Environ. Sci. Technol. 1999, 33, 2266-2272.

    Komazaki, Y.; Hamada, Y.; Hashimoto, S.; Fujita, T.; Tanaka, S. Development of an Automated, Simultaneous and Continuous Measurement System by Using a Diffusion Scrubber Coupled to Ion Chromatography for Monitoring Trace Acidic and Basic Gases (HCl, HNO3, SO2 and NH3) in the Atmosphere. Analyst 1999, 124, 1151-1157.

    Kuhne, R.; Ebert, R. U.; Schuurmann, G. Prediction of The Temperature Dependency of Henry's Law Constant from Chemical Structure. Environ. Sci. Technol. 2005, 39, 6705-6711.

    Kuo, C.-T.; Wang, P.-Y.; Wu, C.-H. Fluorometric Determination of Ammonium Ion by Ion Chromatography Using Postcolumn Derivatization with o-Phthaldialdehyde. J. Chromatogr. A 2005, 1085, 91-97.

    Lewis, W. K.; Whitman, W. G. Principles of Gas Absorption. Ind. Eng. Chem. 1924, 16, 1215-1220.

    Li, J.; Dasgupta, P. K. Chemiluminescence Detection with a Liquid Core Waveguide Determination of Ammonium with Electrogenerated Hypochlorite Based on the Luminol-Hypochlorite Reaction. Anal. Chim. Acta. 1999, 398, 33-39.

    Meseguer-Lloret, S.; Molins-Legua, C.; Campins-Falco, P. Ammonium Determination in Water Samples by Using Opa–Nac Reagent: a Comparative Study with Nessler and Ammonium Selective Electrode Methods. Int. J. Environ. Anal. Chem. 2002, 82, 475-489.

    Meseguer-Lloret, S.; Molins-Legua, C.; Verdu-Andres, J.; Campins-Falco, P. Chemiluminescent Method for Detection of Eutrophication Sources by Estimation of Organic Amino Nitrogen and Ammonium in Water. Anal. Chem. 2006, 78, 7504-7510.

    Moliner-Martinez, Y.; Campins-Falco, P.; Herraez-Hernandez, R. Influence of The Presence of Surfactants and Humic Acid in Waters on The Indophenol-Type Reaction Method for Ammonium Determination. Talanta 2006, 69, 1038-1045.

    Moliner-Martinez, Y.; Herraez-Hernandez, R.; Campins-Falco, P. Improved Detection Limit for Ammonium/Ammonia Achieved by Berthelot’s Reaction by Use of Solid-Phase Extraction Coupled to Diffuse Reflectance Spectroscopy. Anal. Chim. Acta. 2005, 534, 327-334.

    Molins-Legua, C.; Meseguer-Lloret, S.; Moliner-Martinez, Y.; Campı´ns-Falco, P. A Guide for Selecting the Most Appropriate Method for Ammonium Determination in Water Analysis. Trends Anal. Chem. 2006, 25, 282-290.

    Ni, J. Mechanistic Models of Ammonia Release from Liquid Manure: a Review. J. Agric. Eng. Res. 1999, 72, 1-17.

    Niedzielski, P.; Kurzyca, I.; Siepak, J. A New Tool for Inorganic Nitrogen Speciation Study: Simultaneous Determination of Ammonium Ion, Nitrite and Nitrate by Ion chromatography with Post-Column Ammonium Derivatization by Nessler Reagent and Diode-Array Detection in Rain Water Samples. Anal. Chim. Acta. 2006, 577, 220-224.

    Oliveira, S. M.; Lopes, T. I. M. S.; Toth, I. V.; Rangel, A.O. S. S. A Multi-Commuted Flow Injection System with A Multi-Channel Propulsion Unit Placed Before Detection: Spectrophotometric Determination of Ammonium. Anal. Chim. Acta. 2007, 600, 29-34.

    Pogany, A.; Mohacsi, A.; Varga, A.; Bozoki, Z.; Galbacs, Z.; Horvath, L.; Szabo, G. A Compact Ammonia Detector with Sub-ppb Accuracy Using Near-Infrared Photoacoustic Spectroscopy and Preconcentration Sampling. Environ. Sci. Technol. 2009, 43, 826-830.

    Richens, D. A.; Simpson, D.; Peterson, S.; McGinn, A.; Lamb, J. D. Use of Mobile Phase 18-Crown-6 to Improve Peak Resolution Between Mono- and Divalent Metal and Amine Cations in Ion Chromatography. J. Chromatogr. A 2003, 1016, 155-164.

    Roth, M. Fluorescene Reaction for Amoni Acids. Anal. Chem. 1971, 43, 880-882.

    Shi, Q.; Jayne, P. D. T.; Worsnop, D. R.; Kolb, C. E. Uptake of Gas-Phase Ammonia. 1. Uptake by Aqueous Surfaces as A Function of pH. J. Phys. Chem. A 1999, 103, 8812-8823.

    Soria, A. C.; Martinez-Castro, I.; Sanz, J. Study of The Precision in The Purge-and-Trap-Gas Chromatography-Mass Spectrometry Analysis of Volatile Compounds in Honey. J. Chromatogr. A 2009, 1216, 3300-3304.

    Staudinger, J.; Roberts, P. V. A Critical Compilation of Henry's Law Constant Temperature Dependence Relations for Organic Compounds in Dilute Aqueous Solutions. Chemosphere 2001, 44, 561-576.

    Sutton, M. A.; Erisman, J. W.; Dentener, F.; Moller, D. Ammonia in The Environment: From Ancient Times to The Present. Environ. Pollut. 2008, 156, 583-604.

    Suzuki, K.; Siswanta, D.; Otsuka, T.; Amano, T.; Ikeda, T.; Hisamoto, H.; Yoshihara, R.; Ohba, S. Design and Synthesis of A More Highly Selective Ammonium Ionophore Than Nonactin and Its Application as An Ion-Sensing Component for An Ion-Selective Electrode. Anal. Chem. 2000, 72, 2200-2205.

    Tsai, C. J.; Huang, C. H.; Wang, S. H. Collection Efficiency and Capacity of Three Samplers for Acidic and Basic Gases. Environ. Sci. Technol. 2001, 35, 2572-2575.

    Wang, P.-Y.; Wu, J.-Y.; Chen, H.-J.; Lin, T.-Y.; Wu, C.-H. Purge-and-Trap Ion Chromatography for the Determination of Trace Ammonium Ion in High-Salinity Water Samples. J. Chromatogr. A 2008, 1188, 69–74.

    Worsnop, D. R.; Williams, L. R.; Kolb, C. E.; Mozurkewich, M.; Gershenzon, M.; Davidovits, P. Comment on "The NH3 Mass Accommodation Coefficient for Uptake onto Sulfuric Acid Solution". J. Phys. Chem. A 2004, 108, 8546-8548.

    Books
    Davis, M. L.; Masten, S. J. Principles of Environmental Engineering and Science McGraw-Hill Science: New York, 2004.

    DeSilva, F.; Gorrell, M. Wastewater Technology Fact Sheet Ammonia Stripping. Washington, D.C., 2000.

    Stumm, W.; Morgan, J. J. Aquatic Chemistry Chemical Equilibra and Rates in Natural Water 3rd edition. Wiley-Interscience Publication: New York, 1996.

    Wagman, D. D.; Evans, W. H.; Parker, V. B.; Halow, I.; Bailey, S. M.; Schumm, R. H. Selected Values of Chemical Thermodynamic Properties. Washington, D. C., 1968.

    Thesis
    吳靜宜. 水相中銅與胺基酸錯合物之光分解產物研究:氨的定量與分析. 碩士論文,
    國立清華大學, 新竹, 2005.

    陳鴻震. 改善吹氣捕捉系統搭配離子層析儀量測高鹽度樣品中的銨離子. 碩士論文,
    國立清華大學, 新竹, 2007.

    林宗儀. 進一步改良吹氣捕捉系統搭配離子層析儀測量高鹽度樣品中銨離子濃度.
    國立清華大學, 新竹, 2008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE