研究生: |
蔡宜均 Yi-Jiun Tsai |
---|---|
論文名稱: |
利用多元素石墨爐原子吸收光譜儀同時測定中藥中的銅、鎘和鉛元素 Simultaneous Determination of Copper, Cadmium, and Lead in Chinese medicine with a Multielement Graphite Furnace Atomic Absorption Spectrometer |
指導教授: |
黃賢達
Dr. Shang-Da Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 102 |
中文關鍵詞: | 多元素石墨爐原子吸收光譜儀 、銅 、鎘 、鉛 、中藥 |
外文關鍵詞: | Multielement Graphite Furnace Atomic Absorption Spectrometer, Copper, Cadmium, Lead, Chinese medicine |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,使用中藥中毒的案例層出不窮,甚至有人將中藥副作用當成藥效的現象,中藥的成分和來源相當的複雜,因此會對內容物標示不詳盡,而不易讓人警覺其潛在的危險性。為了探討微量元素在中藥中對人體的關係。本研究以微量分析化學的方法,利用多元素石墨爐原子吸收光譜儀發展中藥(補中益氣湯)中微量元素的分析技術,達成同時及快速多元素分析之目標。
本研究使用多元素石墨爐原子吸收光譜儀,直接且同時測定中藥(補中益氣湯)中的銅、鎘和鉛元素,由於中藥粉中無機鹽類及不易溶於水的特性會對直接測量產生嚴重的干擾,因此先將中藥粉(補中益氣湯)微波消化,且三種元素在中藥樣品中的含量均低,故添加適當的鈀修飾劑,並尋找儀器最佳化設定。本分析方法為使用單純的去離子水(含0.2% HNO3)校正曲線,成功地定量標準尿液中的銅、鎘和鉛元素,測定值與ICP-MS偵測值並不會相差太大。
本方法應用中藥(補中益氣湯)的分析,回收率均在100±7%之內。此外,銅、鎘和鉛元素的偵測極限都很低,在灰化溫度600℃,原子化溫度1950℃,添加Pd修飾劑時,分別為0.74ppb,0.12ppb,0.03ppb;在灰化溫度為400℃及原子化溫度為2050℃,無添加鈀修飾時在原子化溫度為2150℃時,三元素之偵測極限分別為2.56ppb,0.59ppb及0.26ppb。相對標準偏差都小於8%。
A simple method was developed for the direct and simultaneous determination of copper, cadmium, and lead in urine by a multi-element graphite furnace atomic absorption spectrometer (Perkin-Elmer SIMAA 6000). Pd was used as the chemical modifier along with a purge gas (100% Ar). The matrix interferences were removed effectively so that a simple calibration curve method could be used (with microwave digestion). A Chinese medication sample (Bu-zhong-yi-qi-tang) used to find the optimal temperature program. The recovery (using the Bu-zhong-yi-qi-tang sample) were within 90%-110% for three elements. With the ashing temperature at 600℃, and the atomization temperature at 1950℃, the detection limits were 0.74 µg l-1 for Cu, 0.12 µg l-1 for Cd, and 0.03 µg l-1 for Pb. The relative standard deviations (RSDs) was lower than 8%.
[1]M. Piscator, Handbook on the Toxicology of Metals, L. Friberg, G. Nordberg, V. B. Vouk, Eds., Elsevier/North-Holland, amsterdam, 411, 1979.
[2]S. P. Halloran, Systemic Aspects of Biochemistry, Vol. 1, D. F. Williams, Ed., CRC Press, Boca Raton, Fla., 211, 1981.
[3]臺北市土壤污染優先地區重金屬含量調查研究,民國83年6月。
[4]彭安、王文華,環境生物無機化學,1993.
[5]A. H. Osteras, M. Greger, Accumulation of, and interactions between, calcium and heavy metals in wood and bark of Picea abies., J. Plant Nutr. Soil Sc., 2003, 246, 166.
[6]C. Dietz, T. Perez-Corona, Y. Madrid-Albarran and C. Camara, SPME for on-line volatile organo-selenium speciation., J. Anal. At. Spectrom., 2003, 18, 467.
[7]T, Matousek, R. E. Sturgeon, Surfactant assisted chemical vapour generation of silver for AAS and ICP-OES: a mechanistic study., J. Anal. At. Spectrom., 1980, 52, 182.
[8]X. R. Wang, Z. X. Zhuang, D. H. Sun, J. X. Hong, X. H. Wu, F. S. C. Lee, M. S. Yang, H. W. Leung, Trace metals in traditional Chinese medicine: A preliminary study using ICP-MS for metal determination and as speciation , At. Spectrom, 1999, 20(3), 86.
[9]B. Buckley, W. Fang, C. Gilmartin, W. Johnson, (EOHSI-Rutgers Univ., Pascataway, NJ 08855, USA). Presented at FACSS XXIII, Kansas City, MO, USA, 1996, Sep. 29-Oct. 4.
[10]X. D. Tian, Z. X. Zhuang, B. Chen, X. R. Wang, Determination of arsenic speciation by capillary electrophoresis and ICP-MS using a movable reduction bed hydride generation system, At. Spectrom, 1999, 20(4), 127.
[11]J. V. Headley, W. Massiah, D. Laberge, J. R. Purdy, Rapid screening for mancozeb in exposure trials by inductively coupled plasma-atomic emission spectrometric determination of manganese, J. AOAC Int., 1996, 79(5), 1184.
[12]K. Kahen, A. Strubinger, J. R. Chirinos and A. Montaser, Direct injection high efficiency nebulizer-inductively coupled plasma mass spectrometry for analysis of petroleum samples., Spectrom. Acta, 2003, 58(B), 397.
[13]M. Dogutan and H. Filik, I. Tor, Preconcentration and speciation of chromium using a melamine based polymeric sequestering succinic acid resin: its application for Cr(VI) and Cr(III) determination in wastewater., Talanta, 2003, 59, 1053.
[14]A. Bertolino, M. Frye, J. H. Callicott, V. S. Mattay, R. Rakow, J. Shelton-Repella, R. Post and D. R. Weinberger, Neuronal pathology in the hippocampal area of patients with bipolar disorder: A study with proton magnetic resonance spectroscopic imaging., Biol. Psychiat., 2003, 53, 906.
[15]S. D'Angeli, P. Lauri, W. Dewitte, H. Van Onckelen and E. Caboni, Factors affecting in vitro shoot formation from vegetative shoot apices of apple and relationship between organogenic response and cytokinin localization., Plant. Biosyst., 2001, 135, 95.
[16]Y. Ke, J. T. Coyle, N. S. Simpson, S. A.Gruber, P. F. Renshaw, D. A. Yurgelun-Todd, Frontal brain NAA T2 values are significantly lower in schizophrenia., Schizophr. Res., 2003, 60, 242.
[17]Chu-Fang Wang, Ming-Jenq Duo, E. E. Chang and Jenq Yann Yang, Essential and toxic trace elements in the Chinese medicine., J. Radioanal. Nuclear Chem., 1996, 211(2), 333.
[18]林蕙雅,安胎劑中鉛、鎘、鉻、砷元素含量之分析探討,碩士論文,朝陽科技大學應用化學研究所,2001.
[19]Yan Li, Yan Jiang, Xiu-Ping Yan, Wen-Jie Peng and Yue-Ying Wu, A flow injection on-line multiplex sorption preconcentration procedure coupled with flame atomic absorption spectrometry for determination of trace lead in water, tea, and herb medicines., Anal. Chem. 2002, 74, 1075.
[20]莊一全,以原子吸收光譜儀測定中藥及子宮頸黏液之微量金屬元素,高雄醫學大學醫學研究所,2002.
[21]K. Yasuda, T. Okumoto, A. Yonetani, H. Yamada and K. Ohishi, in Colloquium Atomspektrometrische Spurenanlytik. Ed. B. Welz, Perkin-Elmer GmbH, Uberlingen, 1989, 5, 133.
[22] Anna Lozak, Krystyna Soltyk, Peter Ostapczuk and Zbigniew Fijalek, Determination of selected trace element in herbs and their infusions., The Sci. of the Total Enviro. 2002, 289, 33.
[23]B. Radziuk, G. Rodel and H. Stenz, Spectrometer system for simultaneous multielement electrothermal atomic-absorption spectrometry using line sources and zeeman-effect background correction., J. Anal. At. Spectrom., 1995, 10, 127.
[24]葉榮泰, 同時多元素分析-石墨爐原子吸收光譜儀之設計原理與應用, 科儀新知第18卷第4期, 1997, p50.
[25]B. Radziuk, G. Rodel, M. Zeiher, S. Mizuno and K. Yamamoto, Solid-state detector for simultaneous multielement electtothermal atomic absorption spectrometry with zeeman-effect background correction., J. Anal. At. Spectrom., 1995, 10, 415.
[26]J. M. Harnly, Instrumentation for simultaneous multielement atomic absorption spectrometry with graphite furnace atomization., Fresenius J. Anal. Chem., 1996, 355, 501.
[27]H. J. M. Bowen, and M. Omar, Pre-concentration of environmental tin and its determination using catechol violet., Analyst, 1982, 107, 654.
[28]B. Welz, "Atomic Absorption Spectrometry", 2nd, VCH publishers, 1985.
[29]J. B. Dawson, Analytical atomic spectroscopy-learning from its past., J. Anal. At. Spectrom., 1991, 6, 93.
[30]W. Slavin, D. C. Manning and G. R. Carnrick, Effect of graphite-furnace substrate materials on analyses by furnace atomic-absorption spectrometry., At. Spectrosc., 1981, 2, 137.
[31]J. D. Ingle and S. R. Crouch, Spectrometry Analysis, Prentice-Hall, Inc, 1988.
[32]G. Carnrick, G. Schlemmer, and W. Slavin, Matrix modifiers-their role and history for furnace AAS., American Laboratory, 1991, 2, 120.
[33]G. Machata, and R. Binder, Z. Rechtsmed., 1973, 73, 29.
[34]J. P. Matousek and K. G. Brodie, Anal. Chem., 1973, 45, 1606.
[35]G. Schlemmer, B. Welz, Palladium and magnesium nitrates, a more universal modifier for graphite-furnace atomic-absorption spectrometry., Spectrochim. Acta, 1986, vol. 41B, no.11, 1157.
[36]J. R. Andersen, S. Reimert, Analyst, Determination of aluminum in human-tissues and body-fluids by zeeman-corrected atomic-absorption spectrometry., 1986, 111, 657.
[37]P. Dube, Determination of chhromium in human-urine by graphite-furnace atomic-absorption spectrometry with zeeman-effect bachground correction., Analyst, 1988, 113, 917.
[38]D. E. Richard, Atomic Absorption Newsletter, 1975, vol. 14, no.5 127.
[39]M. Bettinelli, U. Baroni, F. Fontana, P. Poisetti, Evaluation of the L’vov platform and matrix modification for the determination of aluminum in serum., Analyst, 1985, 110, 19.
[40]K. G. Feitsma, J. P. Franke, Comparison og some matrix modifiers for the determination of cadium in urine by atomic-absorption spectrometry with electrothermal atomization., Analyst, 1984, 109, 789.
[41]K. S. Subramanian, J. C. Meranger, J. E. Mackeen, Graphite-furnace atomic-absorption spectrometry with matrix modification for determination for determination of cadmiun and lead in human-urine., Anal. Chem., 1983, 55, 1064.
[42]E. W. Loya, Graphite-furnace determination of molybdenum by palladium-hydroxylamine hydrochloride of hydrochloride matrix modification., Atomic Spectroscopy, 1989, vol. 10, no. 2, 61.
[43]D. L. Styris, L. J. Prell, D. A. Redfield, Mechanisms of palladiums of palladium-induced stabilization of arsenic in electrothermal atomization atomic-absorption spectrosocopy., Anal. Chem., 1991, 63 508.
[44]B. Welz, G. Schlemmer, J. R. Mudakavit, Investigation and elimination of chloride interference on thallium in graphite-furnace atomic-absorption spectrometry., Anal. Chem., 1988, 3, 695.
[45]S. Luan, X. Q. Shan, Z. M. Ni, Determination of lithium in serum and whole-blood by graphite-furnace atomic-absorption spectrometry., J. Anal. At. Spectrom., 1988, 3, 989.
[46]G. Weibust, F. J. Langmyhr, and Y. Thomassen, Thermal stabilization of inorganic and organically-bound tellurium for electrometry atomic-absorption spectrometry., Anal. Chim. Acta, 1981, 128, 23.
[47]L. Z. Jin, Z. M. Ni, Matrix modification for the determination of trace amounts of bismuth in wastewater, sea-water and urine by graphite-furnace atomic-absorption spectrometry., 1982, 26, 219.
[48]X.Q. Shan, M. Z. Ni, L. Zhang, Determination of arsenic in soil, coal fly-ash and biological samples by electrothermal atomic-absorption spectrometry with matrix modification., Anal. Chim. Acta, 1983, 151, 179.
[49]X.Q. Shan, M. Z. Ni, L. Zhang, Application of matrix-modification in wastewater by graphite-furnace atomic-absorption., Talanta, 1984, 31, 150.
[50]L. Ping, K. Fuwa, and K. Matsumoto, Sensitivity enhancement by palladium addition in the electrothermal atomic absorption spectrometry of mercury., Anal. Chim. Acta, 1985, 171, 279.
[51]X.Q. Shan, M. Z. Ni, Z. N. Yvan, Determination of indium in minerals, river sediments and coal fly-ash by electrothermal atomic-absorption spectrometry with palladium as a matrix modofoer., Anal. Chim. Acta, 1985, 171, 269.
[52]A. J. Curtius et al., Determination of phosphorus by graphite-furnace atomic-absorption spectrometry .2. comparison of different modifiers., J. Anal. At. Spectrom., 1987, 2, 115.
[53]B. Welz, G. Schlemmer, and J. R. Mudakavi, Palladium nitrate magnesium-nitrate modifier for graphite-furnace atomic-absorption spectrometry .2. determination of arsenic, cadium, copper, manganese, lead, antimony, selenium and thallium in water., J. Anal. At. Spectrom., 1988, 3 ,695.
[54]G. bozai, G. Schlemmer, and Z. Grobernski, Determination of arsenic, cadmium, lead and selenium in highly mineralized waters by graphite-furnace atomic-absorption spectrometry., Talanta, 1990, 37, 545.
[55]B. Welz, G. Schlemmer, and J. R. Mudakavi, Determination of arsenium and cadmium in marine biological tissue samples using a stabilized temperature platform arc with zeeman-effect background correction atomic-absorption spectrometry., J. Anal. At. Specrtrom.,
1986, 1, 119.
[56]de Oliveira AP, de Moraes M, Neto JAG, Lima EC, Direct determination of Al, As, Cu, Fe, Mn, and Ni in fuel ethanol by simultaneous GFAAS using integrated platforms pretreated with W-Rh permanent modifier together with Pd plus Mg modifier. At. Spectrosc., 2002, 23, 190.
[57]J. Jaganathan, K. Ewing, and I. Aggarawal, Determination of iron, cobalt, nickel, and copper in lanthanum nitrate by graphite-furnace atomic-absorption spectrometry., At. Spectrosc., 1988, 9, 166.
[58]X. F. Yin, G. Schlemmer, B. Welz, Cadium determination in biological-materials using graphite-furnace atomic-absorption spectrometry with palladium nitrate ammonium-nitrate modifier., Anal. Chem., 1987, 59, 1462.
[59]A. J. Curtius, G. Schlemmer, and B. Welz, Determination of phosphorus by graphite-furnace atomic-absorption spectrometry .2. comparison of different modifiers., J. Anal. At. Spectrom., 1987, 2, 312.
[60]M. S. Epstein et al., Anal. Chem., Automated slurry sample introduction for analysis of a river sediment by graphite-furnace atomic-absorption spectrometry., 1989, 61, 1414.
[61]Z. Li, G. R. Carnrick, J. Schickli, S. Mcintosh and W. Slavin, Using the sodium-sulfate interference for lead to test the fork platform design., At. Spectrosc., 1990, 11, 216.
[62]B. Welz, G. Schlemmer, and J. R. Mudukavi, Investigation and elimination of chloride interference on thallium in graphite-furnace atomic-absorption spectrometry., Anal. Chem., 1988, 60, 2567.
[63]L. M. Voth-Beach, D. E. Shrader, Investigation of a reduced palladium chemical modifier for graphite-furnace atomic-absorption spectrometry., J. Anal. At. Spectrom., 1987, 2, 45.
[64]L. M. Beach, T. M. Rettberg, D. E. Shrader, Application of deduced palladium chemical modification for GFAAS., Abstr. Pap. Am. Chem. S., 1988, 195(1), 208.
[65]M. B. Knowles, K. G. Brodie, Determination of selenium in blood by zeeman graphite-furnace atomic-absorption spectrometry using a palladium ascorbic acid chemical modifier., J. Anal. At. Spectrom., 1988, 3, 511.
[66]Z. Grobenski, R. Tamm, B Welz and U. Voellkopf, Solid sampling in graphite-furnace atomic-absorption spectrometry using the cup-in-tube technique., Analyst, 1985, 110, 573.
[67]D. L. Tsalev, V. I. Slaveykova, and P. B.Mandjukov, Chemical modification in graphite-furnace atomic-absorption spectrometry., Spectrochim. Acta Rev., 1990, 13, 225.
[68]H. Qiao, K. W. Jackson, Modification by palladium in the analysis of slurries by graphite-furnace atomic-absorption spectrometry – a physical-mechanism., Spectrochim. Acta, 1992, 47A, 1267.
[69]B. Welz, G. Schlemmer, Specrtochim. Acta, Palladium and magnesium nitrates, a more universal modifier for graphite-furnace atomic-absorption spectrometry., 1986, 41B, 1157.
[70]B. Welz, G. Schlemmer, and J. R. Mudukavi, Palladium nitrate madifier for electrothermal atomic-absorption spectrometry .3. determination of mercury in environmental standard reference materials., J. anal. At. Spectrom., 1992, 7, 499.
[71]D. E. Shrader, L. M. Beach, and T. M. Rettberg, Graphite-furnace AAS-application of reduced palladium as a chemical modifier., Res. Nat. Inst. Stand. Technol. 1988, 93 (3), 450.
[72]B. Welz, G. Schlemmer, J. R. Mudukavi, Investigation and elimination of chloride interference on thallium in graphite-furnace atomic-absorption spectrometry., Anal. Chem., 1988, 60, 2567.
[73]Skoog, Holler, Nieman, Principles of Instrumental Analysis, fifth edition, 253-271.
[74]Chakraborty R., Das A. K., Cervera, M. L., dela Guardia, M. Determination of cadmium by electrothermal atomic absorption spectrometry after microwave assisted digestion of animal tissues and sewage sludges., Fresenius J. Anal. Chem., 1996, 355, 43.
[75]揚末雄等, 微波消化之方法與應用, 化學, 1998, 56, 4, p269.
[76]Qiao, K. W. Jackson, Modification by palladium in the analysis of slurries by graphite furnace atomic absorption spectrometry: a physical mechanism. Spectrochimica Acta, 1991, 47B(11), 1267.
[77]盧宏民編,中藥大辭典,台北,1983.