研究生: |
朱龍琨 |
---|---|
論文名稱: |
利用直接沉積高介電閘極氧化物於鍺半導體製作高效能金氧半元件 High Performance Germanium MOS Devices with Directly Deposited High-k Gate Dielectrics |
指導教授: |
洪銘輝
黃倉秀 |
口試委員: |
洪銘輝
黃倉秀 郭瑞年 劉致為 郭治群 皮敦文 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 226 |
中文關鍵詞: | 鍺 、金氧半元件 、高介電氧化物 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了因應16奈米互補式金氧半技術的需要,在既有的矽半導體外,鍺半導體因為具有較高的載子遷移率而成為很有潛力的材料。高性能鍺金氧半元件必須同時達到極佳的高介電氧化物與鍺間的界面以及很低的等效氧化物厚度,然而因鍺本身有著不好的原生氧化物,使得要達成極佳的高介電氧化物與鍺間的界面變得十分困難。此研究利用在超高真空下直接沉積高介電氧化物於鍺上來製作金氧半元件,在沒有顯著的鍺擴散與界面層形成的情況下,達到氧化物的高介電常數與絕佳的氧化物與鍺間的界面。
在此論文中,分子束磊晶成長的氧化釔與氧化鎵(氧化钆)應用在鍺金氧半元件的製作。各樣的分析,包括化學、結構與電性都進行以了解此閘極層與界面。經由適當的退火與氟處理後,此鍺金氧半元件展現極高的特性,像是絕佳的電容-電壓特徵、低界面缺陷密度(1011 cm-2eV-1)、低漏電(小10-8 A/cm2)與高氧化鎵(氧化钆)界電常數(14到16),這些都說明了此氧化物與界面的高品質與高熱穩定性。
進一步地,在金氧半場效電晶體中(線寬約1μm,等效氧化物厚度3.8 nm),飽和電流密度、最高電導值與電洞遷移率分別高達496 μA/μm、178 μS/μm、389 cm2/V-s。當再降低氧化物厚度後,等效氧化物厚度則更小至約1.38 nm,伴隨著有系統的電晶體性能增益,使得飽和電流密度與最高電導值分別更達到約800 μA/μm與423 μS/μm,而電洞遷移率仍維持約300 cm2/V-s。氧化鎵(氧化钆)極佳的可微縮性以及其對於鍺表面鈍化的能力,使其具有相當的潛力在下世代鍺通道金氧半元件上被應用。
When channel materials other than Si are urgently demanded to enhance the performance of complementary metal-oxide-semiconductor (CMOS) beyond 16 nm technology node, Ge has always been considered as one viable contender because of its mobility advantages compared to Si. A high-quality interface between high- dielectrics and Ge as well as a small equivalent oxide thickness (EOT) are necessarily required for future high-performance Ge MOS device. However, it is challenging to achieve a good oxide/Ge interface mainly due to the unfavorable surface properties and native oxides of Ge. This work approaches Ge MOS devices with direct deposition of high-κ dielectrics on Ge under ultra-high-vacuum (UHV), while a high κ value of the gate oxides and a decent oxide/Ge interface quality are maintained without significant Ge inter-diffusion and formation of interfacial layers (ILs).
In this dissertation, molecular beam deposited (MBD) high- Y2O¬3 and Ga2O3(Gd2O3) [GGO] have been utilized as the gate dielectrics for Ge MOS devices without using ILs. Comprehensive investigations have been carried out chemically, structurally, and electronically, to study the gate stacks, especially the oxide/Ge interfaces. With appropriate post oxide deposition treatment for the gate stacks with GGO, such as annealing and fluorine incorporation, the Ge MOS devices, i.e., MOS capacitors (MOSCAPs) and MOS field-effect-transistors (MOSFETs), have exhibited very high performance. Excellent capacitance-voltage (C-V) characteristics, a low interfacial density of states (Dit’s) in the range of 1011 cm-2eV-1, and a low gate leakage of less than 10-8 A/cm2 along with a high value (14-16) of the GGO indicate the gate dielectrics and GGO/Ge interface are of high quality and thermally stable. Furthermore, the MOSFETs, with a gate length (Lg) of 1 μm an EOT of ~3.8 nm, have yielded high performance in terms of a high drain current density (Id), a maximum transconductance (gm), and hole mobility (μh) of 496 μA/μm, 178 μS/μm, and 389 cm2/V-s, respectively. When further reducing the oxide thickness, a smaller EOT of ~1.38 nm has been achieved. The device performance has been systematically enhanced in good agreement with the increased oxide capacitance, showing an Id of 800 μA/μm and a gm of 423 μS/μm in a MOSFET with a Lg of 1μm, while the μh remained ~300 cm2/V-s. The excellent GGO scalability and its effective passivation for Ge surface suggest GGO stands a good chance of realizing the applications of Ge-channel pMOS devices for next-generation CMOS technology.
[1] D. Kahng and M. M. Atalla, in IRE-AIEE Solid-State Device Res. Conf., 1960.
[2] G. Baccarani, M. R. Wordeman, and R. H. Dennard, IEEE Transactions on Electron Devices 31(4), 452 (1984).
[3] G. E. Moore, Electronics 38, 114 (1965).
[4] G. E. Moore, Tech. Dig. – Int. Electron Devices Meet., 21, 11, 1975.
[5] The International Technology Roadmap for Semiconductors (http://public.itrs.net/)
[6] R. Chau, M.Doczy, B. Doyle, S. Datta, G. Dewey, J. Kavalieros, B. Jin, M. Metz, A. Majumdar, and M. Radosavljević, in Solid-State and Integrated Circuits Technology, 1, p.26, 2004.
[7] D. A. Muller, T. Sorsch, S. Moccio, F. H. Baumann, K. Evans-Lutterodt, and G. Timp, Nature 399, 758 (1999).
[8] S. Tang, R. M. Wallace, A. Seabaugh, and D. King-Smith, Applied Surface Science 135, 137 (1998).
[9] G. D. Wilk, R. M. Wallace, and J.M. Anthony, Journal of Applied Physics 89(10), 5243 (2001).
[10] M. Depas, B. Vermeire, P. W. Mertens, R. L. Van Meirhaeghe, and M. M. Heyns, Solid-State Electronics 38(8), 1465 (1995).
[11] A. T. Fromhold, Quantum Mechanics for Applied Physics and Engineering, Dover, New York, 1981.
[12] M. T. Bohr, R. S Chau, T. Ghani, and K. Mistry, IEEE Spectrum 44, 29 (2007).
[13] B. H. Lee, L. Kang, R. Nieh, W.-J. Qi, and J. C. Lee, Applied Physics Letters 76, 1926 (2000).
[14] M. Gutowski, J. E. Jaffe, C.-L. Liu, M. Stoker, R. I. Hedge, R. S. Rai, and P. J. Tobin, Applied Physics Letters 80, 1897 (2002).
[15] A. R. Teren, R. Thomas, J. He, and P. Ehrhart, Thin Solid Films 478, 206 (2005).
[16] J. Robertson, Reports on Progress in Physics 69, 327 (2006).
[17] C. H. Pan, J. Kwo, K. Y. Lee, W. C. Lee, L. K. Chu, M. L. Huang, Y. J. Lee, and M. Hong, Journal of Vacuum Science and Technology B 26(3), 1178 (2008).
[18] D. A. Buchanan, S.-H. Lo, in: H.Z. Massoud, E.H. Poindexter, C.R. Helms (Eds.), The Physics and Chemistry of SiO2 and the Si–SiO2 Interface–III, The Electrochemical Society, Pennington, NJ, p.3, 1996.
[19] B. Brar, G. D. Wilk, A. C. Seaburgh, Applied Physics Letters 69, 2728 (1996).
[20] G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, TDMR, 5(1) p.5, 2005.
[21] K. Y. Lee, W. C. Lee, M. L. Huang, C. H. Chang, Y. J. Lee, Y. K. Chiu, T. B. Wu, M. Hong, and R. Kwo, Journal of Crystal Growth 301, 378 (2007).
[22] J. Robertson, Journal of Vacuum Science and Technology B 18(3), 1785 (2000).
[23] T. Kauerauf, B. Govoreanu, R. Degraeve, G. Groeseneken, and H. Maes, Solid- State Electronics 49, 695 (2005).
[24] K. Kukli, J. Ihanus, M. Ritala, and M. Leskelä, Applied Physics Letters 68, 3737 (1996).
[25] J. Aarik, A. Aidla, A.-A. Kiisler, T. Uustare, and V. Sammelselg, Thin Solid Films 340, 110 (1999).
[26] E. P. Gusev, C. Cabral Jr., M. Copel, C. D’Emic, and M. Gribelyuk, Microelectronic Engineering 69, 145 (2003).
[27] D. R. G. Mitchell, A. Aidla, and J. Aarik, Applied Surface Science 253, 606 (2006).
[28] H. Y. Yu, N. Wu, M. F. Li, C. Zhu, B. J. Cho, D.-L. Kwong, C. H. Tung, J. S. Pan, J. W. Chai, W. D. Wang, D. Z. Chi, C. H. Ang, J. Z. Zheng, and S. Ramanathan, Applied Physics Letters 81, 3618 (2002).
[29] S. Ferrari, and G. Scarel, Journal of Applied Physics 96, 144 (2004).
[30] S. Van Elshocht, C. Adelmann, T. Conard, A. Delabie, A. Franquet, L. Nyns, O. Richard, P. Lehnen, J. Swerts, and S. De Gendt, Journal of Vacuum Science and Technology A 26, 724 (2008).
[31] C. C. Hobbs, L. R. C. Fonseca, V. Dhandapani, S. B. Samavedam, W. J. Taylor, J. M. Grant, L. G. Dip, D. H. Triyoso, R. I. Hegde, D. C. Gilmer, R. Garcia, D. Roan, M. L. Lovejoy, R. Rai, E. A. Hebert, H. H. Tseng, B. E. White Jr., and P. J. Tobin, VLSI Technology Symposium Technical Digest, p.9, 2003.
[32] M. M. Frank, G. D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y. J. Chabal, J. Grazul, and D. A. Muller, Applied Physics Letters 86, 152904 (2005).
[33] C. C. Hobbs, L. R. C. Fonseca, A. Knizhnik, V. Dhandapani, S. B. Samavedam, W. J. Taylor, J. M. Grant, L. G. Dip, D. H. Triyoso, R. I. Hegde, D. C. Gilmer, R. Garcia, D. Roan, M. L. Lovejoy, R. S. Rai, E. A. Hebert, H. H. Tseng, S. G. H. Anderson, B. E. White, and P. J. Tobin, IEEE Transactions on Electron Devices, 51(6), 971 (2004).
[34] H. R. Huff, A. Hou, C. Lim, Y. Kim, J. Bamett, G. Bersuker, G. A. Brown, C. D. Young, P. M. Zeitzoff, J. Gutt, P. Lysaght, M. I. Gardner, and R. W. Murto, Microelectronic Engineering, 69, 152 (2003).
[35] K. Mistry, C. Allen, C. Auth, B. Beattie, D. Bergstrom, M. Bost, M. Brazier, M. Buehler, A. Cappellani, R. Chau, C.-H. Choi, G. Ding, K. Fischer, T. Ghani, R. Grover, W. Han, D. Hanken, M. Hattendorf, J. He, J. Hicks, R. Huessner, D. Ingerly, P. Jain, R. James, L. Jong, S. Joshi, C. Kenyon, K. Kuhn, K. Lee, H. Liu, J. Maiz, B. McIntyre, P. Moon, J. Neirynck, S. Pae, C. Parker, D. Parsons, C. Prasad, L. Pipes, M. Prince, P. Ranade, T. Reynolds, J. Sandford, L. Shifren, J. Sebastian, J. Seiple, D. Simon, S. Sivakumar, P. Smith, C. Thomas, T. T roeger, P. Vandervoorn, S. Williams, and K. Zawadzki, Tech. Dig. – Int. Electron Devices Meet., 247, 2007.
[36] P. Packan, S. Akbar, M. Armstrong, D. Bergstrom, M. Brazier, H. Deshpande, K. Dev, G. Ding, T. Ghani, O. Golonzka, W. Han, J. He, R. Heussner, R. James, J. Jopling, C. Kenyon, S-H. Lee, M. Liu, S. Lodha, B. Mattis, A. Murthy, L. Neiberg, J. Neirynck, S. Pae, C. Parker, L. Pipes, J. Sebastian, J. Seiple, B. Sell, A. Sharma, S. Sivakumar, B. Song, A. St. Amour, K. Tone, T. Troeger, C. Weber, K. Zhang, Y. Luo, and S. Natarajan, Tech. Dig. – Int. Electron Devices Meet., 659, 2009.
[37] T. Ghani, M. Armstrong, C. Auth, M. Bost, P. Charvat, G. Glass, T. Hoffmann*, K. Johnson#, C. Kenyon, J. Klaus, B. McIntyre, K. Mistry, A. Murthy, J. Sandford, M. Silberstein, S. Sivakumar, P. Smith, K. Zawadzki, S. Thompson and M. Bohr, Tech. Dig. – Int. Electron Devices Meet., 978, 2003.
[38] S. E. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C.-H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Z. Ma, B. Mcintyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, IEEE Transactions on Electron Devices 51(11), 1790 (2004).
[39] X. Huang, W.-C. Lee, C. Kuo, D. Hisamoto, L. Chang, J. Kedzierski, E. Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, T.-J King, J. Bokor, and C. Hu, Tech. Dig. – Int. Electron Devices Meet., 67, 1999.
[40] J. Kedzierski, M. Ieong, E. J. Nowak, T. S. Kanarsky, Y. Zhang, R. Roy, D. Boyd, D. Fried and H.-S. P. Wong, IEEE Transactions on Electron Devices 50, 952 (2003).
[41] G. Tsutsui and T. Hiramoto, IEEE Transactions on Electron Devices 53, 2582 (2006).
[42] www.intel.com/technology/architecture-silicon/22nm/
[43] M. Bohr, Tech. Dig. – Int. Electron Devices Meet., 1, 2011.
[44] M. Lundstrom, IEEE Electron Device Letters 18(7), 361 (1997).
[45] A. Lochtefeld and D. A. Antoniadis, IEEE Electron Device Letters 22(2), 95 (2001).
[46] A. Lochtefeld and D. A. Antoniadis, IEEE Electron Device Letters 22(12), 591 (2001).
[47] S. M. Sze, Physics of Semiconductors Devices, 2nd edition, Wiley, New York, 1981.
[48] M. Lundstrom, IEEE Electron Device Letters 22(6), 293 (2001).
[49] C. O. Chui, H. Kim, P. C. McIntyre, and K. C. Saraswat, Tech. Dig. – Int. Electron Devices Meet., 437, 2003.
[50] S. Takagi, M. Takayanagi, and A. Toriumi, IEEE Transactions on Electron Devices 47(5), 999 (2000).
[51] F. Ren, M. Hong, W. S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen, and A. Y. Cho, Solid-State Electronics 41(11), 1751 (1997).
[52] G. Brammertz, M. Caymax, Y. Mols, S. Degroote, M. Leys, J. V. Steenbergen, G. Winderickx, G. Borghs, and M. M. Meuris, ECS Transactions, 3(7), 585 (2006).
[53] C. O. Chui, H. Kim, D. Chi, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, Tech. Dig. – Int. Electron Devices Meet., 437, 2002.
[54] Y. Kamata, Y. Kamimuta, T. Ino, R. Lijima, M. Koyama, and A. Nishiyama, Japanese Journal of Applied Physics 45, 5651 (2006).
[55] T. Tezuka, N. Sugiyama, and S. Takagi, Applied Physics Letters 79, 1798 (2001).
[56] G. Taraschi, A. J. Pitera, and E. A. Fitzgerald, Solid-State Electronics 48(11), 1297 (2004).
[57] H. Y. Yu, S. Cheng, J. H. Park, A. K. Okyay, M. C. Onbasli, B. Ercan, Y. Nishi, and K. C. Saraswat, Applied Physics Letters 97, 063503 (2010).
[58] H. C. Luan, D. R. Lim, K. K. Lee, K. M. Chen, J. G. Sandland, K. Wada, and L. C. Kimerling, Applied Physics Letters 75, 2909 (1999).
[59] A. Nayfeh, C. O. Chui, K. C. Saraswat, and T. Yonehara, Applied Physics Letters 85, 2815 (2004).
[59] M. Bruel, Electron Letters 31(14), 1201 (1995).
[61] T. Akatsu, C. Deguet, L. Sanchez, F. Allibert, D. Rouchon, T. Signamarcheix, C. Richtarch, A. Boussagol, V. Loup, F. Mazen, J.-M. Hartmann, Y. Campidelli, L. Clavelier, F. Letertre, N. Kernevez, and C. Mazure, Materials Science in Semiconductor Processing 9 444 (2006).
[62] S. Nakaharai, T. Tezuka, N. Sugiyama, Y. Moriyama, and S. Takagi, Applied Physics Letters 83, 3516 (2003).
[63] L. Souriau, T. Nguyen, E. Augendre, R. Loo, V. Terzieva, M. Caymax, S. Cristoloveanu, M. Meuris, and W. Vandervorsta, Journal of The Electrochemical Society 156(3), H208 (2009).
[64] J. F. Damlencourt, B. Vincent, P. Rivallin, E. Martinez, Y. Campidelli, P. Holliger, D. Rouchon, T. Nguyen, Y. Morand, S. Cristoloveanu, and L. Clavelier, International Conference on Silicon Epitaxy and Heterostructures, p.42, 2007.
[65] V. Terzieva, L. Souriau, M. Caymax, D. Brunco, A. Moussa, S. Van Elshocht, R. Loo, F. Clemente, A. Satta, M. Meuris, Thin Solid Films 517(1), 172 (2008).
[66] G. Wang, R. Loo, E. Simoen, L. Souriau, M. Caymax, M.M. Heyns, B. Blanpain, Applied Physics Letters 94, 102115 (2009).
[67] T. Maeda, K. Ikeda, S. Nakaharai, T. Tezuka, N. Sugiyama, Y. Moriyama, and S. Takagi, Thin Solid Films 508, 346 (2006).
[68] J. Oh, P. Majhi, H. Lee, O. Yoo, S. Banerjee, C. Y. Kang, J.-W. Yang, R. Harris, H.-H. Tseng, and R. Jammy, IEEE Electron Device Letters 28, 1044 (2007).
[69] M. Pourbaix, Atlas of Electrochemical Equilibria in Aqueous Solutions, Pergamon Press, London, 1966.
[70] N. N. Greenwood and A. Earnshaw, Chemistry of the Elements, Pergamon, Oxford, 1997.
[71] D. Schmeisser, R. D. Schnell, A. Bogen, F. J. Himpsel, D. Rieger, G. Landgren, J. F. Morar, Surface Science 172(2), 455 (1986).
[72] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, Applied Physics Letters 76, 2244 (2000).
[73] S. Saito, T. Hosoi, H. Watanabe, and T. Ono, Applied Physics Letters 95, 011908 (2009).
[74] Y. Nakakita, R. Nakane, T. Sasada, H. Matsubara, M. Takenaka, and S. Takagi, Tech. Dig. – Int. Electron Devices Meet., 877, 2008.
[75] C. H. Lee, T. Tabata, T. Nishimura, K. Nagashio, K. Kita, and A. Toriumi, Applied Physics Express 2, 071404 (2009).
[76] K. Kita, S. K. Wang, M. Yoshida, C. H. Lee, K. Nagashio, T. Nishimura, and A. Toriumi, Tech. Dig. – Int. Electron Devices Meet., 693, 2009.
[77] L. Tsetseris and S. T. Pantelides, Applied Physics Letters 95, 262107 (2009).
[78] R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka, and S. Takagi, IEEE Transactions on Electron Devices 59, 335 (2012).
[79] H.-C. Chang, S.-C. Lu, T.-P. Chou, C.-M. Lin, and C. W. Liu, Journal of Applied Physics 111, 076105 (2012).
[80] D. J. Hymes and J. J. Rosenberg, Journal of The Electrochemical Society 135(4), 961 (1988).
[81] C. O. Chui, F. Ito, and K. C. Saraswat, IEEE Electron Device Letters 25, 613 (2004).
[82] C. O. Chui, F. Ito, and K. C. Saraswat, IEEE Transactions on Electron Devices 53(7), 1501 (2006).
[83] D. P. Brunco, B. De Jaeger, G. Eneman, J. Mitard, G. Hellings, A. Satta, V. Terzieva, L. Souriau, F. E. Leys, G. Pourtois, M. Houssa, G. Winderickx, E. Vrancken, S. Sioncke, K. Opsomer, G. Nicholas, M. Caymax, A. Stesmans, J. Van Steenbergen, P. W. Mertens, M. Meuris, and M. M. Heyns, Journal of The Electrochemical Society 155(7), H552 (2008).
[84] G. Pourtois, M. Houssa, B. De Jaeger, B. Kaczer, F. Leys, M. Meuris, M. Caymax, G. Groeseneken, and M. M. Heyns, Applied Physics Letters 91, 0235065 (2007).
[85] K. Martens, B. Kaczer, T. Grasser, B. De Jaeger, M. Meuris, H. E. Maes, and G. Groeseneken, IEEE Electron Device Letters 29(12), 1364 (2008).
[86] N. Taoka, W. Mizubayashi, Y. Morita, S. Migita, H. Ota, and S. Takagi, Japanese Journal of Applied Physics 49, 04DA09 (2010).
[87] M. Caymax, M. Houssa, G. Pourtois, F. Bellenger, K. Martens, A. Delabie, and S. Van Elshocht, Applied Surface Science 254, 6094 (2008).
[88] F. Seker, K. Meeker, T. F. Kuech, and A. B. Ellis, Chemical Reviews 100, 2505 (2000).
[89] A. Lamzatouar, O. Palais, O. B. M. Hardouin Duparc, J. Thibault, and A. Charaï, Journal of Materials Science 40, 3163 (2005).
[90] M. M. Frank, S. J. Koester, M. Copel, J. A. Ott, V. K. Paruchuri, H. Shang, T. Loesing, Applied Physics Letters 89, 112905 (2006).
[91] S. Sioncke, H. C. Lin, L. Nyns, G. Brammertz, A. Delabie, T. Conard, A. Franquet, J. Rip, H. Struyf, S. De Gendt, M. Muller, B. Beckhoff, and M. Caymax, Journal of Applied Physics 110, 084907 (2011).
[92] C. O. Chui, S. Ramanathan, B. B. Triplett, P. C. McIntyre, and K. C. Saraswat, IEEE Electron Device Letters 23(8), 473 (2002).
[93] H. Kim, C. O. Chui, K. C. Saraswat, and P. McIntyre, Applied Physics Letters 83, 2647 (2003).
[94] F. Bellenger, C. Merckling, J. Penaud, M. Houssa, M. Caymax, M. Meuris, K. De Meyer, amd M. M. Heyns, ECS Transactions, 16(5), 411 (2008).
[95] M. Milojevic, R. Contreras-Guerrero, M. Lopez-Lopez, J. Kim, and R. M. Wallace, Applied Physics Letters 95, 212902 (2009).
[96] S. Swaminathan, Y. Oshima, M. A. Kelly, and P. C. McIntyre, Applied Physics Letters 95, 032907 (2009).
[97] T. Tabata, C. H. Lee, K. Kita, A. Toriumi, ECS Transactions, 16, 479 (2008).
[98] C. H. Lee, T. Nishimura, T. Tabata, S. K. Wang, K. Nagashio, K. Kita, and A. Toriumi, Tech. Dig. – Int. Electron Devices Meet., 416, 2010.
[99] D. P. Brunco, A. Dimoulas, N. Boukos, M. Houssa, T. Conard, K. Martens, C. Zhao, F. Bellenger, M. Caymax, M. Meuris, and M. M. Heyns, Journal of Applied Physics 102, 024104 (2007).
[100] K. Kita, T. Takahashi, T. Takahashi, H. Nomura, S. Suzuki, T. Nishimura, and A. Toriumi, Applied Surface Science 254, 6100 (2008).
[101] M. Hong, J. P. Mannaerts, J. E. Bower, J. Kwo, M. Passlack, W.-Y. Hwang, and L. W. Tu, Journal of Crystal Growth 175/176, 422 (1997).
[102] F. Ren, J. M. Kuo, M. Hong, W. S. Hobson, J. R. Lothian, J. Lin, W. S. Tseng, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen, and A. Y. Cho, IEEE Electron Device Letters 19, 309 (1998).
[103] T. D. Lin, H. C. Chiu, P. Chang, L. T. Tung, C. P. Chen, M. Hong, J. Kwo, W. Tsai, and Y. C. Wang, Applied Physics Letters 93, 033516 (2008).
[104] J. F. Ziegler. James Ziegler - SRIM & TRIM (http://www.srim.org/).
[105] Stefan Hüfner, Photoelectron Spectroscopy: Principles and Applications, Springer-Verlag, Berlin Heidelberg, 1995.
[106] B. K. Agarwal, X-Ray Spectroscopy, 2nd edition, Springer-Verlag, Berlin Heidelberg, 1991.
[107] B. B. Ratner and D. G. Castner, Surface-Analysis-The Principle Techniques, Wiley, New York, 1997.
[108] E. H. Nicollian and J. R. Brews, MOS Physics and Technology, Wiley, New York, 2003.
[109] E. H. Nicollian and A. Goetzberger, Bell System Technical Journal 46, 1055 (1967).
[110] D. K. Schroder, Semiconductor Material and Device Characterization, Wiley, New York, 2005.
[111] L. K. Chu, W. C. Lee, M. L. Huang, Y. H. Chang, L. T. Tung, C. C. Chang, Y. J. Lee, J. Kwo, and M. Hong, Journal of Crystal Growth 311, 2198 (2009).
[112] J. Kwo, M. Hong, A. R. Kortan, K. L. Queeney, Y. J. Chabal, R. L. Opila, Jr., D. A. Muller, S. N. G. Chu, B. J. Sapjeta, T. S. Lay, J. P. Mannaerts, T. Boone, H. W. Krautter, J. J. Krajewski, A. M. Sergnt, J. M. Rosamilia, Journal of Applied Physics 89(7), 3920 (2001).
[113] B. W. Busch, J. Kwo, M. Hong, J. P. Mannaerts, B. J. Sapjeta, W. H. Schulte, E. Garfunkel, and T. Gustafsson, Applied Physics Letters 79(15), 2447 (2001).
[114] M. L. Huang, Y. C. Chang, C. H. Chang, T. D. Lin, J. Kwo, T. B. Wu, and M. Hong, Applied Physics Letters 89, 012903 (2006).
[115] Pen Chang, Interface engineering between high- dielectrics and III-V high mobility channel materials for passivation enabling the technology beyond Si CMOS. PhD thesis, National Tsing Hua University, 2011.
[116] K. H. Hsiu, C. H. Chiang, Y. J. Lee, W. C. Lee, P. Chang, L. T. Tung, M. Hong, J. Kwo, and W. Tsai, Journal of Vacuum Science and Technology B 26, 1132 (2008).
[117] spare
[118] W. P. Bai, N. Lu, J. Liu, A. Ramirez, D. L. Kwong, D. Wristers, A. Ritenour, L. Lee, D. Antoniadis, Tech. Dig. – Int. Symposium on Very-Large-Scale Integration, p.121, 2003.
[119] A. Dimoulas, G. Mavrou, G. Vellianitis, E. Evangelou, N. Boukos, M. Houssa, M. Caymax, Applied Physics Letters 86, 032908 (2005).
[120] J. J. Chen, N. A. Bojarczuk, H. Shang, M. Copel, J. B. Hannon, J. Karasinski, E. Presiler, S. K. Banerjee, S. Guha, IEEE Transactions on Electron Devices, 51(9), 1441 (2004).
[121] C. O. Chui, H. Kim, P. C. McIntyre, and K. C. Saraswat, IEEE Electron Device Letters 25, 274 (2004).
[122] P. Zimmerman, G. Nicholas, B. De Jaeger, B. Kaczer, A Stesmans, L-A Ragnarsson, D.P. Brunco, F.E. Leys, M. Caymax, G. Winderickx, K. Opsomer, M. Meuris, M. Heyns, Tech. Dig. – Int. Electron Devices Meet., 655, 2006.
[123] B. De Jaeger, G. Nicholas, D.P. Brunco, G. Eneman, M. Meuis, M. Heyns, European Solid-State Device Research Conference, p.462, 2007.
[124] Y. Kamata, Y. Kamimuta, T. Ino, A. Nishiyama, Japanese Journal of Applied Physics 44, 2323 (2005).
[125] W. Bai, N. Lu, A. P. Ritenour, M. L. Lee, D. A. Antoniadis, and D.-L. Kwong, IEEE Transactions on Electron Devices, 53(10), 2551 (2006).
[126] R. E. Paulsen and M. H. White, IEEE Transactions on Electron Devices, 41(7), 1213 (1994).
[127] N. Goel, P. Majhi, W. Tsai, M. Warusawithana, D. G. Schlom, M. B. Santos, J. S. Harris, and Y. Nishi, Applied Physics Letters 91, 093509 (2007).
[128] Kuen-Hao Shiu, Oxide Scalability Characteristics in MBE grown Al2O3/Ga2O3(Gd2O3)/In0.2Ga0.8As/GaAs MOS Capacitors and ALD-Al2O3/In0.2Ga0.8As/GaAs MOSFET: ALD Growth, Processing, and Characteristics. Master thesis, National Tsing Hua University, 2008.
[129] S. Abermann, O. Bethge, C. Henkel, and E. Bertagnolli, Applied Physics Letters 94, 262904 (2009).
[130] K. L. Brower, Physical Review B 38, 9657 (1988).
[131] R. Puthenkovilakam, Y.-S. Lin, J. Choi, J. Lu, H.-O. Blom, P. Pianetta, D. Devine, M. Sendler, and J. P. Chang, Journal of Applied Physics 97, 023704 (2005).
[132] T. B. Hook, E. Adler, F. Guarin, J. Lukaitis, N. Rovedo, and K. Schruefer, IEEE Transactions on Electron Devices, 48(7), 1346 (2001).
[133] A. Dimoulas, P. Tsipas, A. Sotiropoulos, E.K. Evangelou, Applied Physics Letters 89, 252110 (2006).
[134] H. Luth, Surfaces and Interfaces of Solid Materials 3rd ed., Springer-Verlag, Berlin Heidelberg, pp.431, 1995.
[135] S. C. Sun and J. D. Plummer, IEEE Transactions on Electron Devices, 27(8), 1497 (1980).
[136] W. B. Chen C. H. Cheng, C. W. Lin, P. C. Chen, and A. Chin, Solid-State Electronics 55, 64 (2011).
[137] C. H. Lee, T. D. Lin, L. T. Tung, M. L. Huang, M. Hong, and J. Kwo, Journal of Vacuum Science and Technology B 26(3), 1128 (2008).
[138] L. K. Chu, T. D. Lin, M. L. Huang, R. L. Chu, C. C. Chang, J. Kwo, and M. Hong, Applied Physics Letters 94, 202108 (2009).
[139] C. P. Chen, Y. J. Lee, Y. C. Chang, Z. K. Yang, M. Hong, J. Kwo, H. Y. Lee, and T. S. Lay, Journal of Applied Physics 102, 081301 (2007).
[140] M. Hong, A. R. Kortan, J. Kwo, J. P. Mannaerts, J. J. Krajewski, Z. H. Lu, K. C. Hsieh, and K. Y. Cheng, Journal of Vacuum Science and Technology B 18, 1688 (2000).
[141] T. D. Lin, M. C. Hang, C. H. Hsu, J. Kwo, and M. Hong, Journal of Crystal Growth 301, 386 (2007).
[142] A. Dimoulas, D. P. Brunco, S. Ferrari, J. W. Seo, Y. Panayiotatos, A. Sotiropoulos, T. Conard, M. Caymax, S. Spiga, M. Fanciulli, Ch. Dieker, E. K. Evangelou, S. Galata, M. Houssa, and M. M. Heyns, Thin Solid Films 515, 6337 (2007).
[143] L. M. Terman, Solid-State Electronics 5, 285 (1962).
[144] K. Martens, C. O. Chui, G. Brammertz, B. D. Jaeger, D. Kuzum, M. Meuris, M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes, and G. Groeseneken, IEEE Transactions on Electron Devices, 55, 547 (2008).
[145] V. V. Afanas’ev and A. Stesmans, Journal of Applied Physics 102, 081301 (2007).
[146] T. S. Lay, M. Hong, J. Kwo, J. P. Mannaerts, W. H. Hung, and D. C. Huang, Solid-State Electronics 45, 1679 (2001).
[147] E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk, Physical Review Letters 44, 1620 (1980).
[148] V. V. Afanas’ev, S. Shamuilia, A. Stesmans, A. Dimoulas, Y. Panayiotatos, and A. Sotiropoulos, M. Houssa and D. P. Brunco, Applied Physics Letters 88, 132111 (2006).
[149] D. Lin, G. Brammertz, S. Sioncke, L. Nyns, A. Alian, W.-E Wang, M. Heyns, M. Caymax, and T. Hoffmann, ECS Transactions, 34(1), 1065 (2011).
[150] S. Guha, E. Cartier, M. A. Gribelyuk, N. A. Bojarczuk, and M. C. Copel, Applied Physics Letters 77, 2710 (2000).
[151] R. Xie, T. H. Phung, W. He, M. Yu, and C. Zhu, IEEE Transactions on Electron Devices 56(6), 1330 (2009).
[152] C. O. Chui, H. Kim, D. Chi, P. C. McIntyre, and K. C. Saraswat, IEEE Transactions on Electron Devices 53(7), 1509 (2006).
[153] K. Chen, H. C. Wang, P. K. Ko, and C. Hu, IEEE Electron Device Letters 17, 202 (1996).
[154] T. Maeda, Y. Morita, and S. Takagi, Applied Physics Express 3, 061301 (2010).
[155] A. Ritenour, A. Khakifirooz, D. A. Antoniadis, R. Z. Lei, W. Tsai, A. Dimoulas, G. Mavrou, and Y. Panayiotatos, Applied Physics Letters 88, 132107 (2006).
[156] G. Nicholas, B. De. Jaeger, D. P. Brunco, P. Zimmerman, G. Eneman, K. Martens, M. Meuris, and M. Heyns, IEEE Transactions on Electron Devices, 54, 2503 (2007).
[157] L. K. Chu, R. L. Chu, T. D. Lin, W. C. Lee, C. A. Lin, M. L. Huang, Y. J. Lee, J. Kwo, and M. Hong, Solid-State Electronics 54, 965 (2010).
[158] R. L. Chu, T. D. Lin, L. K. Chu, M. L. Huang, C. C. Chang, M. Hong, C. A. Lin, and J. Kwo, Journal of Vacuum Science and Technology B 28(3), C3A1 (2010).
[159] C. A. Lin, H. C. Lin, T. H. Chiang, R. L. Chu, L. K. Chu, T. D. Lin, Y. C. Chang, W.-E. Wang, J. R. Kwo, and M. Hong, Applied Physics Express 4, 111101 (2011).
[160] L. K. Chu, T. H. Chiang, T. D. Lin, Y. J. Lee, R. L. Chu, J. Kwo, and M. Hong, Microelectronic Engineering 91, 89 (2012).
[161] A. Toriumi, C. H. Lee, S. K. Wang, T. Tabata, M. Yoshida, D. D. Zhao, T. Nishimura, K. Kita, and K. Nagashio, Tech. Dig. – Int. Electron Devices Meet., 246, 2011.
[162] R. Zhang, T. Iwasaki, N. Taoka, M. Takenaka, and S. Takagi, Applied Physics Letters 98, 112902 (2011).
[163] C. N. Berglund, IEEE Transactions on Electron Devices, 13, 701 (1966).
[164] G. Brammertz, K. Martens, S. Sioncke, A. Delabie, M. Caymax, M. Meuris, and M. Heyns, Applied Physics Letters 91, 133510 (2007).
[165] J. Mitard, K. Martens, B. De Jaeger, J. Franco, C. Shea, C. Plourde, F. E. Leys, R. Loo, G. Hellings, G. Eneman, W.-E. Wang, J. C. Lin, B. Kaczer, K. De Meyer, T. Hoffmann, S. De Gendt, M. Caymax, M. Meuris, and M. M. Heyns, European Solid-State Device Research Conference, p.411, 2009.
[166] C. H. Lee, T. Nishimura, K. Nagashio, K. Kita, and A. Toriumi, IEEE Transactions on Electron Devices, 58(5), 1295 (2011).
[167] G. Timp, K. K. Bourdelle, J. E. Bower, F. H. Baumann, T. Boone, R. Cirelli, K. E. Lutterodt, J. Garno, A. Ghetti, H. Gossmann, M. Green, D. Jacobson, Y. Kim, R. Kleiman, F. Klemens, A. Kornblit, C. Lochstampfor, W. Mansfield, S. Moccio, D. A. Muller, L. E. Ocola, M. L. O’Malley, J. Rosamilia, J. Sapjeta, P. Silverman, T. Sorsch, D. M. Tennant, W. Timp, and B. E. Weir, Tech. Dig. – Int. Electron Devices Meet., 615, 1998.
[168] A. Dimoulas, G. Vellianitis, G. Mavrou, E. K. Evangelou, A. Sotiropoulos, Applied Physics Letters 86, 223507 (2005).
[169] J. Hauser, CVC© NCSU software, Department Electrical Computer Engineering, North Carolina State University, Raleigh, NC (1996).
[170] T.-W. Pi, M. L. Huang, W. C. Lee, L. K. Chu, T. D. Lin, T. H. Chiang, Y. C. Wang, Y. D. Wu, M. Hong, and J. Kwo, Applied Physics Letters 98, 062903 (2011).
[171] T.-W. Pi, W. C. Lee, M. L. Huang, L. K. Chu, T. D. Lin, T. H. Chiang, Y. C. Wang, Y. D. Wu, M. Hong, Journal of Applied Physics 109, 063725 (2011).
[172] K. Prabhakaran, F. Maeda, Y. Watanabe, and T. Ogino, Applied Physics Letters 76, 2244 (2000).
[173] O. Renault, L. Fourdrinier, E. Martinez, L. Clavelier, C. Le Royer, N. Barrett, and C. Crotti, Applied Physics Letters 90, 052112 (2007).
[174] L. Souriau, T. Nguyen, E. Augendre, R. Loo, V. Terzieva, M. Caymax, S. Cristoloveanu, M. Meuris, and W. Vandervorsta, Journal of Chemical Physics 19, 011104 (2008).
[175] O. Vancauwenberghe, O. C. Hellman, N. Herbots, and W. J. Tan, Applied Physics Letters 59, 2031 (1991).
[176] A. Molle, Md. N. K. Bhuiyan, G. Tallarida, and M. Fanciulli, Applied Physics Letters 89, 083504 (2006).
[177] T. W. Pi, J. F. Wen, C. P. Ouyang, and R. T. Wu, Physical Review B 63, 153310 (2001).
[178] K.-I. Seo, P. C. McIntyre, S. Sun, D.-I. Lee, P. Pianetta, and K. C. Saraswat, Applied Physics Letters 87, 042902 (2005).
[179] S. H. Hsu, C. L. Chu, W. H. Tu, Y. C. Fu, P. J. Song, H. C. Chang, Y. T. Chen, L. Y. Cho, W. Hsu, G. L. Luo, C. W. Liu, C. Hu, F. L. Yang, Tech. Dig. – Int. Electron Devices Meet., 825, 2011.
[180] J. P. Xu, X. F. Zhang, C. X. Li, P. T. Lai, C. L. Chan, IEEE Electron Device Letters 29(10), 1155 (2008).
[181] R. Xie, T. H. Phung, M. Yu, and C. Zhu, IEEE Transactions on Electron Devices 57(6), 1399 (2010).
[182] J. Mitard, C. Shea, B. De Jaeger, A. Pristera, G. Wang, M. Houssa, G. Eneman, G. Hellings, W.-E. Wang, J. C. Lin, F. E. Leys, R. Loo, G. Winderickx, E. Vrancken, A. Stesmans, K. De Meyer, M. Caymax, L. Pantisano, M. Meuris, and M. Heyns, Tech. Dig. – Int. Symposium on Very-Large-Scale Integration, p.82, 2009.