研究生: |
陳盈瑞 Chen, Yin-Jui |
---|---|
論文名稱: |
高速馬赫曾德爾矽光調變器及鍺光偵測器之設計與分析 Design and Analysis of High Speed Silicon Mach-Zehnder Optical Modulators and Germanium Photodetectors |
指導教授: |
李明昌
Lee, Ming-Chang |
口試委員: |
劉怡君
Liu, Yi-Chun 徐碩鴻 Hsu, Shuo-Hung |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2019 |
畢業學年度: | 107 |
語文別: | 中文 |
論文頁數: | 159 |
中文關鍵詞: | 等效電路模型 、光調變 、傳輸線 、矽光子 、鍺光偵測器 |
外文關鍵詞: | Equivalent circuit model, Optical modulation, Transmission lines, Silicon photonics, Germanium photodetector |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著近年來數據傳輸需求大幅增加,導致大量數據傳輸的速度達到前所未有的需求,而光通訊傳輸系統相較於電通訊傳輸系統具有更低的能量損耗,並且有更快的傳輸速率,而本篇所注重的主要元件為高速矽光調變器以及高速鍺光偵測器,我們將設計並整合以上兩種元件,建構具上傳及下載的矽光子光載射頻轉換光電晶片模組。
本篇利用矽光調變器及鍺光偵測器之等效電路模型來進行元件設計,首先針對矽光子光載射頻轉換光電晶片所運用的被動元件(光波導、光柵耦合器、多模干涉耦合器以及波長解多工器)進行設計,接著根據本篇所整理的元件設計參數與元件特性關係,建立其設計流程。
接著根據設計流程進行矽波導(鍺波導)尺寸、調變區域(收光區域)、傳輸電極尺寸及長度等最佳化設計,而根據矽光調變器的模擬(量測)結果顯示,當電極長度為1mm時,其電光操作頻寬約為37(21)GHz,長度為2mm時,則約為23(10)GHz;而根據鍺光偵測器的模擬結果顯示,當鍺波導寬度為0.5μm時,其操作頻寬約為20GHz,而當鍺波導寬度為0.4μm時,其操作頻寬約為25GHz。
而在矽光調變器的量測上,當電極長度為1mm時,我們成功觀測到32Gb/s調變之眼圖;而當電極長度為2mm時,我們成功觀測到28Gb/s調變之眼圖。
With continuous demand for data transmission during the past few years. This has resulted in an unprecedented demand in the speed and volume of data transmission. Compared with the electric transmission system, the optical transmission system has lower energy loss and has higher transmission speed. The main devices of this thesis are high-speed silicon electro-optical modulators and high-speed germanium photodetectors. We design and integrate the above two devices to construct silicon photonic integrated circuits for radio-over-fiber system with upload and download functions.
In this thesis, we design the silicon optical modulators and germanium photodetectors based on their equivalent circuit model. At first, we design the passive devices (optical waveguide, grating coupler, multimode interference coupler and wavelength demultiplexer) in silicon photonic integrated circuits for radio-over-fiber system. Then, we establish the design flow according to the relationship between the characteristics and parameters of the devices.
Next, we optimize the dimension of silicon(germanium) waveguide, modulation (photodetection) region, size and length of traveling-wave electrode based on the design flow. According to the simulation(measurement) results of optical modulators, the operation bandwidth is about 37(21)GHz / 23(10)GHz when the length of the electrode is 1mm / 2mm. According to the simulation result of germanium photodetectors, the operation bandwidth is about 20GHz(25GHz) when the width of the germanium waveguide is 0.5μm(0.4μm).
In the measurement of silicon optical modulators, we successfully observe the eye diagram under 32Gb/s(28Gb/s) modulation when the length of the electrode is 1mm(2mm).
[1] https://engineering.ucsb.edu/insights2006/pdf/presentations/insights 2006_mario_paniccia.pdf, M. Panicca, “First electrically pumped hybrid silicon laser.ppt”, Oct. 2016.
[2] T. Pfeiffer, “Next generation mobile fronthaul and midhaul architectures”, J. Opt. Commun. Netw., vol. 7, no. 11, pp. 38–45, Nov. 2015.
[3] Liu, A., Liao, L., Rubin, D., Nguyen, H., Ciftcioglu, B., Chetrit, Y., Izhaky, N., and Paniccia, M.: “High-speed optical modulation based on carrier depletion in a silicon waveguide”, Opt. Express, 2007, 15, (2), pp. 660–668
[4] T. Yin, R. Cohen, M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate,” Opt. Exp., vol. 15, pp. 13965–13971, 2007.
[5] U. Fischer, T. Zinke, J. R. Kropp, F. Arndt, and K. Petermann, “0.1 db/cm waveguide losses in single mode SOI RIB waveguides,” IEEE Photon. Technol. Lett., vol. 8, pp. 647–648, May 1996.
[6] K. Okamoto, “Fundamentals of Optical Waveguides.” New York: Academic, 2000.
[7] Palik, E., “Handbook of Optical Constants of Solids.” Academic Press, 1998.
[8] Byun, K.E., et al. “Graphene for metal-semiconductor Ohmic contacts” , in 2012 IEEE Nanotechnology Materials and Devices Conference (NMDC2012). 2012.
[9] Vivien, L., et al., “Comparison between strip and rib SOI microwaveguides for intra-chip light distribution.” Optical Materials, 2005. 27(5): p. 756-762.
[10] Loewen, E.G. and E. Popov, “Diffraction gratings and applictions.” Marcel Dekker Inc, 1997.
[11] Taillaert, D., “Grating Couplers as interface between optical fibers and nanophotonic waveguides.” Ph.D dissertation, Ghent University, 2004.
[12] Bryngdahl, O., “Image formation using self-imaging techniques*.” Journal of the Optical Society of America, 1973. 63(4): p. 416-419.
[13] Soldano, L.B. and E.C.M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications.” Journal of Lightwave Technology, 1995. 13(4): p. 615-627.
[14] Bachmann, M., P.A. Besse, and H. Melchior, “General self-imaging properties in N × N multimode interference couplers including phase relations.” Applied Optics, 1994. 33(18): p. 3905-3911.
[15] T. Mizuno et al., “Uniform wavelength spacing Mach-Zehnder interferometer using phase-generating couplers,” J. Lightwave Technol. 24(8), 3217–3226 (2006).
[16] Ding, R., et al., “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator.” Optics Communications, 2014. 321: p. 124-133.
[17] Soref, R. and B. Bennett, “Electrooptical effects in silicon. IEEE Journal of Quantum Electronics,” 1987. 23(1): p. 123-129.
[18] Reed, G.T., et al., “High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions. Frontiers in Physics,” 2014. 2(77).
[19] Jia Ming Liu, “Photonics Devices”, Cambridge University Press, 2005
[20] Akiyama, S., et al., “Compact PIN-Diode-Based Silicon Modulator Using Side-Wall-Grating Waveguide.” IEEE Journal of Selected Topics in Quantum Electronics, 2013. 19(6): p. 74-84.
[21] Patel, D., et al., “High-speed compact silicon photonic Michelson interferometric modulator.” Optics Express, 2014. 22(22): p. 26788-26802.
[22] Rogalski, A., “Infrared detectors: status and trends.” Progress in Quantum Electronics, 2003. 27(2–3): p. 59-210.
[23] Sze, S. M., Coleman, D. J. & Loya, A. “Current transport in metal–semiconductor– metal (MSM) structures.” Solid-State Electron. 14, 1209–1218 (1971).
[24] Paolo., F.D., “Networks and Devices Using Planar Transmissions Lines.” Taylor & Francis, 2000.
[25] D. M. Pozar, “Microwave Engineering,” 2nd ed. New York: Wiley, 1998.
[26] H. Yu and W. Bogaerts, “An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators,” J. Lightwave Technol. 30(11), 1602–1609 (2012).
[27] Timurdogan, E., et al. “Vertical Junction Silicon Microdisk Modulators at 25Gb/s.” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013. 2013. Anaheim, California: Optical Society of America.
[28] J.-M. Lee, S. H. Cho, and W.-Y. Choi, “An equivalent circuit model for germanium waveguide vertical photodetectors on Si,” IEEE Photon. Technol. Lett., vol. 28, no. 21, pp. 2435–2438, Nov. 1, 2016.
[29] M. M. Fard, G. Cowan, and O. Liboiron-Ladouceur, “Responsivity optimization of a high-speed germanium-onsilicon photodetector,” Opt. Express 24(24), 27738–27752 (2016).
[30] E. Chen and S.Y. Chou, “Characteristics of coplanar transmission lines on multilayer substrates: Modeling and experiments,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 6, pp. 939–945, Jun. 1997.
[31] W. Heinrich, “Quasi-TEM description of MMIC coplanar lines including conductor-loss-effects,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 1, pp. 45–52, Jan. 1993.
[32] V. Milanović, M. Ozgur, D. C. Degroot, J. A. Jargon, M. Gaitan, and M. E. Zaghloul, “Characterization of broadband transmission for coplanar waveguides on CMOS silicon substrates,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 5, pp. 632–640, May 1998.
[33] W. Dally and J. Poulton, “Digital Systems Engineering,” Cambridge Univ. Press, New York, 1998. 1602–1609 (2012).
[34] http://www.fujitsu.com/downloads/OPTCMP/lineup/40gln/ln40gdqpsk-catalog-e.pdf
[35] Chen, H., "Development of an 80 Gbit/s InP-based Mach-Zehnder Modulator. Ph.D dissertation," Dept. Elect. Eng. Comput. Sci., Technical Univ., 2007: p. 65–66
[36] Walker, R.G., "High-speed III-V semiconductor intensity modulators." IEEE Journal of Quantum Electronics, 1991. 27(3): p. 654-667.