簡易檢索 / 詳目顯示

研究生: 吳權哲
Wu, Cyuan-Jhe
論文名稱: Texture Classification Based On Median Vectors And Directional Patterns For Face Recognition
基於中間值向量與方向圖樣的紋理分類法應用於人臉辨識系統
指導教授: 邱瀞德
Chiu, Ching-Te
口試委員: 陳健
范倫達
邱瀞德
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 46
中文關鍵詞: 人臉識別局部描述器局部二元圖樣象限中間值排序向量雜訊
外文關鍵詞: face recognition, local descriptor, local binary pattern (LBP), sorted quadrant median vector (SQMV), noise
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Local Binary Pattern (LBP) represents a circular derivative pattern generated by the concatenation of the binary gradient directions. However, the pattern fails to extract more detailed information such as texture feature contained in the input object. In this thesis, we propose a texture classification based on median vectors, circular derivative patterns, and directional patterns for face recognition. The problem of pixel classified into the inappropriate bin in LBP is solved completely by including the modified SQMV feature. With the texture feature, we could apply this method only on local regions rather than whole face image to reduce the computation complexity and speed up the execution time. The experiment result shows the face recognition rate of our approach is better than the original LBP method. The average execution time ratio of our proposed methods to the original LBP method and the E-GV-LBP method are only about 24% and 1.11% respectively. The robustness against four types of noise model (Gaussian noise, impulse noise, uniform impulse noise and mixed Gaussian and impulse noise) are also demonstrated.


    傳統的局部二元圖樣方法以一連串的二元梯度方向來表示一個圓形導數圖樣。然而局部二元圖樣方法並不能獲取更多細部的資訊,例如輸入影像的紋理特徵。本篇論文中,我們針對人臉識別提出了一個基於中間值向量、圓形導數圖樣與方向圖樣的紋理分類法。在局部二元圖樣方法中,像素可能被分類到不適當柱(bin)的問題。透過我們所提出的良式象限中間值排序向量,上述的問題已經完善的解決。藉由所提出的紋理特徵,我們將這個方法應用到局部區域來取代全臉區域來簡化計算複雜度並加速執行時間。在人臉辨識率上,實驗結果顯示我們所提出方法比傳統的局部二元圖樣方法更好;而在平均執行時間上,實驗結果顯示我們所提出的方法對於局部二元圖樣方法與基於有效賈伯體(Gabor volume)之局部二元圖樣方法的平均執行時間比分別為24%與1.11%。針對高斯雜訊、脈衝雜訊、均勻脈衝雜訊、混合高斯與脈衝雜訊等四種不同雜訊模型的強健性在實驗中也得到了驗證。

    Abstract (Chinese) . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . iii 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 1 2 Local Binary Pattern . . . . . . . . . . . . . . . . . . . 6 3 Proposed Scheme . . . . . . . . . . . . . . . . . . . . . . 9 3.1 The Modified SQMV Feature . . . . . . . . . . . . . . . . 9 3.2 The "SQMV-LBP" Approach . . . . . . . . . . . . . . . . . 13 3.3 The "SQMV-DED" Approach . . . . . . . . . . . . . . . . . 18 4 Experimental Result And Computational Complexity Analysis . 21 4.1 FERET Datebase . . . . . . . . . . . . . . . . . . . . . 22 4.2 Extended Yale B Database . . . . . . . . . . . . . . . . 26 4.3 Face Recognition With Gaussian Noise . . . . . . . . . . 28 4.4 Face Recognition With Impulse Noise . . . . . . . . . . . 31 4.5 Face Recognition With Uniform Impulse Noise . . . . . . . 34 4.6 Face Recognition With Mixed Gaussian And Impulse Nosie . 37 4.7 Computational Complexity Analysis . . . . . . . . . . . . 40 5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 42 References . . . . . . . . . . . . . . . . . . . . . . . . . 44

    [1] M. Turk and A. Pentland, "Eigenfaces for Recognition," Journal of Cognitive Neuroscience, vol. 3, no. 1, pp. 71-86, 1991.
    [2] P. N. Belhumeur, J. P. Hespanha, and D. J. Kriegman, "Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection," IEEE Trans. Pattern Anal. Mach. Intelligence, vol. 19, no. 7, pp. 711-720, Jul. 1997.
    [3] P. S. Penev and J. J. Atick, "Local feature analysis: A general statistical theory for object representation," Network: Computation in Neural Systems, vol. 7, no. 3, pp. 477-500, 1996.
    [4] L. Wiskott, J. M. Fellous, N. Kruger and C. von der Malsburg, "Face recognition by Elastic Bunch Graph Matching," IEEE Trans. Pattern Anal. Mach. Intelligence, vol. 19, no. 7, pp. 755-779, Jul. 1997.
    [5] T. Ojala, M. Pietik�ainen and D. Harwood, "A comparative study of texture measures with classification based on featured distributions," Pattern Recognition, vol. 29, no. 1, pp. 51-59, Jan. 1996.
    [6] T. Ahonen, A. Hadid and M. Pietikainen, "Face Description with Local Binary Patterns: Application to Face Recognition," IEEE Trans. Pattern Anal. Mach. Intelligence, vol. 28, no. 12, pp. 2037-2041, Dec. 2006.
    [7] Sanqiang Zhao, Yongsheng Gao and Baochang Zhang, "Sobel-LBP," IEEE International Conference on Image Processing, pp. 2144-2147, Oct. 2008.
    [8] Lei Chen, Yun-Hong Wang, Yi-Ding Wang and Di Huang, "Face recognition with statistical Local Binary Patterns," International Conference on Machine Learning and Cybernetics, vol. 4, pp. 2433-2439, Jul. 2009.
    [9] B. C. Zhang, Y. S. Gao, S. Q. Zhao and J.Z. Liu, "Local Derivative Pattern Versus Local Binary Pattern: Face Recognition With High-Order Local Pattern Descriptor," IEEE Transactions on Image Processing, vol. 19, no. 2, pp. 533-544, Feb. 2010.
    [10] Xiaoyang Tan and Bill Triggs, "Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions," IEEE Transactions on Image Processing, vol. 19, no. 6, pp. 1635-1650, Jun. 2010.
    [11] C. H. Lin, J. S. Tsai and C. T. Chiu, "Switching Bilateral Filter With a Texture/Noise Detector for Universal Noise Removal," IEEE Transactions on Image Processing, vol. 19, no. 9, pp. 2307-2320, Sep. 2010.
    [12] Wenchao Zhang, Shiguang Shan, Wen Gao, Xilin Chen and Hongming Zhang, "(Local Gabor Binary Pattern Histogram Sequence (LGBPHS): A Novel NonStatistical Model for Face Representation and Recognition)," IEEE International Conference on Computer Vision, vol. 1, pp. 786-791, Oct. 2005.
    [13] Shufu Xie, Shiguang Shan, Xilin Chen and Jie Chen, "Fusing Local Patterns of Gabor Magnitude and Phase for Face Recognition," IEEE Transactions on Image Processing, vol. 19, no. 5, pp. 1349-1361, May 2010.
    [14] Zhen Lei, Shengcai Liao, Matti Pietik�ainen and Stan Z. Li, "Face Recognition by Exploring Information Jointly in Space, Scale and Orientation," IEEE Transactions on Image Processing, vol. 20, no. 1, pp. 247-256, Jan. 2011.
    [15] A. S. Georghiades, P. N. Belhumeur and D. J. Kriegman, "From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose," IEEE Trans. Pattern Anal. Mach. Intelligence, vol. 23, no. 6, pp. 643-660, Jun. 2001.
    [16] P. J. Phillips, H. Moon, S. A. Rizvi and P. J. Rauss, "The FERET Evaluation Methodology for Face-Fecognition Algorithms," IEEE Trans. Pattern Anal. Mach. Intelligence, vol. 22, no. 6, pp. 1090-1104, Oct. 2000.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE