研究生: |
張有勝 Yuo-Sheng Chang |
---|---|
論文名稱: |
膠達那黴素誘發細胞逆境反應及熱休克蛋白90表達之效應 Effects of Geldanamycin on Stress Response and hsp90 Gene Expression in Mammalian Cells |
指導教授: |
黎耀基
Yiu-Kay Lai |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 94 |
中文關鍵詞: | 膠達那黴素 、瑞迪士可黴素 、熱休克反應 、熱休克蛋白 、熱休克因子 、細胞內鈣離子濃度 、訊息傳遞 、基因表達 、及時定量PCR 、體外轉譯實驗 、轉譯效率 |
外文關鍵詞: | geldanamycin, radicicol, heat shock response, heat shock protein, heat shock factor, cytosolic (intracellular) calcium concentration, signal transduction, gene expression, real-time qPCR, in vitro translation, translational efficiency |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究膠達那黴素 (geldanamycin, GA) 引發逆境反應上游的訊息傳遞,以及其對熱休克蛋白Hsp90表達的調控機制。膠達那黴素是一種袢霉素 (ansamycin) 衍生的苯二酮 (benzoquinone) 化合物,分離自天然抗真菌活性的產物。透過專一性抑制Hsp90的ATPase活性,GA可造成受Hsp90保護之蛋白質 (client proteins) 的去活化、不穩定進而快速分解,這類蛋白質包括調節細胞生長、分化等為數眾多的訊息傳導蛋白,如蛋白質激□,及固醇類荷爾蒙受體等。
近年來,許多報導指出GA會引發熱休克反應,而且細胞內的鈣離子可能參與此一過程。本論文研究中,藉由分析Hsp70誘發量的變化,我們發現包括熱休克因子HSF1、鈣離子及相關的蛋白質激□等上游的訊息調控因子,皆參與GA及瑞迪士可黴素 (radicicol, RA) 調控人類非小細胞肺癌H460細胞的熱休克反應。進一步發現GA會引發鈣離子瞬間流入細胞質而導致Hsp70的迅速誘發。實驗結果證明細胞內鈣離子濃度的變化,以及與鈣離子相關且H7敏感的蛋白質激□,藉磷酸化活化HSF1,參與兩種藥物誘發Hsp70的過程。
另一方面,GA處理過的細胞除了誘發Hsp70,同時也會引發Hsp90表現量的增加。在哺乳動物細胞質中,Hsp90存在兩種主要的同源異構體 (isoform),即Hsp90alpha與Hsp90beta,即使在不同物種間Hsp90都具有高度的相似性。為了探討Hsp90alpha與Hsp90beta表達的誘導機制,我們利用及時定量PCR (real-time qPCR) 及同位素代謝標定分析,比較GA處理大鼠腦瘤9L細胞時Hsp90alpha與Hsp90betaβ在mRNA及新生蛋白質量的差異,研究結果發現在GA作用下,Hsp90alpha比Hsp90beta有更好的被誘發性,相反的,Hsp90alpha mRNA量卻低於hsp90beta mRNA,在一般情形下細胞中的hsp90beta mRNA的量是Hsp90alpha mRNA的8.8倍,細胞處理GA後則是3.7倍。進一步,我們試圖了解Hsp90alpha與Hsp90beta表達上的差異是否與轉錄後的調控有關,藉體外轉譯實驗計算兩者的轉譯效率,我們發現Hsp90alpha mRNA有相對更高的轉譯作用,在一般情形下Hsp90alpha mRNA的轉譯效率是Hsp90beta mRNA的8.9倍,細胞處理GA後則是5.8倍。實驗結果證明mRNA層面及轉譯過程的差異造成後來Hsp90alpha與Hsp90beta表達的結果。
綜言之,本研究發現GA的作用能透過活化HSF1來誘發Hsp70,此一訊息傳遞過程與細胞內鈣離子濃度的變化及相關蛋白質激□活性有關;GA對于兩種Hsp90同源異構體的調控主要是在提升轉錄作用,最終決定其表達量在於mRNA量的差異及不同的轉譯效率。
Experiments in this thesis were designed to investigate the upstream signaling of GA-induced stress response and elucidate the inductive mechanisms of Hsp90 upon GA treatment.
Geldanamycin (GA), an ansamycin-derivative benzoquinone compound, was originally isolated as a natural product with anti-fungal activity. GA specifically inhibits the essential ATPase activity of Hsp90 results in inactivation, destabilization, and degradation of Hsp90 client proteins, including a wide variety of signal-transducing proteins that regulate cell growth and differentiation, such as protein kinases and steroid hormone receptors.
Recently, several reports have shown that treatment with GA induces a heat-shock response and intracellular calcium may involve in the process. In this study, we found changes in upstream signaling mediators, including HSF1 and calcium, as well as possible involvement of protein kinase in human non-small cell lung cancer H460 cells treated with Hsp90 binding agents (i.e., GA and radicicol). We further found that GA was able to provoke a rapid calcium influx and thereby resulted in an instant induction of Hsp70. Our results demonstrated that calcium mobilization, a calcium dependent and H7-sensitive protein kinase, along with HSF1 activation by phosphorylation, were all involved in the Hsp70 induction process triggered by the drug.
On the other hand, treatment of cells with GA also induced the expression level of Hsp90 other than Hsp70. In mammals, two major cytoplasmic isoforms of Hsp90, known as Hsp90alpha and Hsp90beta, have been identified and found to be highly conserved among different species. In order to examine the expression of Hsp90 isoforms, the levels of mRNA and nascent protein of Hsp90alpha and Hsp90beta in GA-treated rat brain tumor 9L cells were quantitatively examined using real-time qPCR and metabolic labeling analyses. It is found that Hsp90alpha was more inducible compared to Hsp90beta after GA treatment. Interestingly, the hsp90alpha mRNA was, on the contrary, lower than that of hsp90beta. The relative mRNA level of hsp90beta was respectively about 8.8-fold and 3.7-fold that of hsp90alpha under normal condition and upon GA treatment. Furthermore, we examine whether distinct expression of Hsp90alpha and□Hsp90beta is a result of post-transcriptional regulation. The translational efficiency of Hsp90 isoforms employing in vitro translation was further measured. We found that hsp90alpha mRNA revealed highly effective translation. The translational efficiency of hsp90alpha mRNA was respectively about 8.9-fold and 5.8-fold that of hsp90beta under normal condition and upon GA treatment. Our results indicate that differential expression of Hsp90alpha and Hsp90beta is a consequence involving both the distinct mRNA profiles and the differential translation processes.
In conclusion, treatment with GA was able to activate HSF1 and bring about the induction of Hsp70. Intracellular calcium mobilization and related protein kinase activities are involved in signaling for GA. The primary effect of GA on expression of Hsp90 isoforms is according to promote the transcription of both hsp90 genes. The differential expression of□Hsp90alpha and□Hsp90beta is a consequence of both distinct mRNA profiles and differential translation processes.
Ahmed R, Duncan RF. 2004. Translational regulation of Hsp90 mRNA. AUG-proximal 5'-untranslated region elements essential for preferential heat shock translation. J Biol Chem 279:49919-49930.
Arora S, Yang JM, Hait WN. 2005. Identification of the ubiquitin-proteasome pathway in the regulation of the stability of eukaryotic elongation factor-2 kinase. Cancer Res 65:3806-3810.
Audic Y, Hartley RS. 2004. Post-transcriptional regulation in cancer. Biol Cell 96:479-498.
Bagatell R, Paine-Murrieta GD, Taylor CW, Pulcini EJ, Akinaga S, Benjamin IJ, Whitesell L. 2000. Induction of a heat shock factor 1-dependent stress response alters the cytotoxic activity of hsp90-binding agents. Clin Cancer Res 6:3312-3318.
Bagatell R, Whitesell L. 2004. Altered Hsp90 function in cancer: a unique therapeutic opportunity. Mol Cancer Ther 3:1021-1030.
Baler R, Dahl G, Voellmy R. 1993. Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol Cell Biol 13:2486-2496.
Berridge MJ, Bootman MD, Roderick HL. 2003. Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517-529.
Bertram J, Palfner K, Hiddemann W, Kneba M. 1996. Increase of P-glycoprotein-mediated drug resistance by hsp 90 beta. Anticancer Drugs 7:838-845.
Bharadwaj S, Ali A, Ovsenek N. 1999. Multiple components of the HSP90 chaperone complex function in regulation of heat shock factor 1 In vivo. Mol Cell Biol 19:8033-8041.
Blagosklonny MV. 2002. Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 16:455-462.
Buchner J. 1999. Hsp90 & Co. - a holding for folding. Trends Biochem Sci 24:136-141.
Chang YS, Lee LC, Sun FC, Chao CC, Fu HW, Lai YK. 2006. Involvement of calcium in the differential induction of heat shock protein 70 by heat shock protein 90 inhibitors, geldanamycin and radicicol, in human non-small cell lung cancer H460 cells. J Cell Biochem 97:156-165.
Chen YC, Kuo TC, Lin-Shiau SY, Lin JK. 1996. Induction of HSP70 gene expression by modulation of Ca+2 ion and cellular p53 protein by curcumin in colorectal carcinoma cells. Mol Carcinog 17:224-234.
Chiosis G, Huezo H, Rosen N, Mimnaugh E, Whitesell L, Neckers L. 2003. 17AAG: low target binding affinity and potent cell activity--finding an explanation. Mol Cancer Ther 2:123-129.
Chiosis G, Vilenchik M, Kim J, Solit D. 2004. Hsp90: the vulnerable chaperone. Drug Discov Today 9:881-888.
Choi AM, Tucker RW, Carlson SG, Weigand G, Holbrook NJ. 1994. Calcium mediates expression of stress-response genes in prostaglandin A2-induced growth arrest. Faseb J 8:1048-1054.
Christians ES, Yan LJ, Benjamin IJ. 2002. Heat shock factor 1 and heat shock proteins: Critical partners in protection against acute cell injury. Crit Care Med 30:S43-S50.
Chu B, Soncin F, Price BD, Stevenson MA, Calderwood SK. 1996. Sequential phosphorylation by mitogen-activated protein kinase and glycogen synthase kinase 3 represses transcriptional activation by heat shock factor-1. J Biol Chem 271:30847-30857.
Csermely P, Schnaider T, Soti C, Prohaszka Z, Nardai G. 1998. The 90-kDa molecular chaperone family: structure, function, and clinical applications. A comprehensive review. Pharmacol Ther 79:129-168.
Dale EC, Yang X, Moore SK, Shyamala G. 1996. Cloning and characterization of the promoter for murine 84-kDa heat-shock protein. Gene 172:279-284.
DeBoer C, Meulman PA, Wnuk RJ, Peterson DH. 1970. Geldanamycin, a new antibiotic. J Antibiot (Tokyo) 23:442-447.
Ding XZ, Smallridge RC, Galloway RJ, Kiang JG. 1996. Increases in HSF1 translocation and synthesis in human epidermoid A-431 cells: role of protein kinase C and [Ca+2]i. J Investig Med 44:144-153.
Elia G, De Marco A, Rossi A, Santoro MG. 1996. Inhibition of HSP70 expression by calcium ionophore A23187 in human cells. An effect independent of the acquisition of DNA-binding activity by the heat shock transcription factor. J Biol Chem 271:16111-16118.
Elo MA, Kaarniranta K, Helminen HJ, Lammi MJ. 2005. Hsp90 inhibitor geldanamycin increases hsp70 mRNA stabilisation but fails to activate HSF1 in cells exposed to hydrostatic pressure. Biochim Biophys Acta 1743:115-119.
Ermak G, Davies KJ. 2002. Calcium and oxidative stress: from cell signaling to cell death. Mol Immunol 38:713-721.
Fan M, Park A, Nephew KP. 2005. CHIP (carboxyl terminus of Hsc70-interacting protein) promotes basal and geldanamycin-induced degradation of estrogen receptor-alpha. Mol Endocrinol 19:2901-2914.
Fernandes M, Xiao H, Lis JT. 1994. Fine structure analyses of the Drosophila and Saccharomyces heat shock factor--heat shock element interactions. Nucleic Acids Res 22:167-173.
Goetz MP, Toft DO, Ames MM, Erlichman C. 2003. The Hsp90 chaperone complex as a novel target for cancer therapy. Ann Oncol 14:1169-1176.
Grammatikakis N, Vultur A, Ramana CV, Siganou A, Schweinfest CW, Watson DK, Raptis L. 2002. The role of Hsp90N, a new member of the Hsp90 family, in signal transduction and neoplastic transformation. J Biol Chem 277:8312-8320.
Grenert JP, Sullivan WP, Fadden P, Haystead TA, Clark J, Mimnaugh E, Krutzsch H, Ochel HJ, Schulte TW, Sausville E, Neckers LM, Toft DO. 1997. The amino-terminal domain of heat shock protein 90 (hsp90) that binds geldanamycin is an ATP/ADP switch domain that regulates hsp90 conformation. J Biol Chem 272:23843-23850.
Griffin TM, Valdez TV, Mestril R. 2004. Radicicol activates heat shock protein expression and cardioprotection in neonatal rat cardiomyocytes. Am J Physiol Heart Circ Physiol 287:H1081-1088.
Grynkiewicz G, Poenie M, Tsien RY. 1985. A new generation of Ca+2 indicators with greatly improved fluorescence properties. J Biol Chem 260:3440-3450.
Hansen LK, Houchins JP, O'Leary JJ. 1991. Differential regulation of HSC70, HSP70, HSP90 alpha, and HSP90 beta mRNA expression by mitogen activation and heat shock in human lymphocytes. Exp Cell Res 192:587-596.
Hess MA, Duncan RF. 1996. Sequence and structure determinants of Drosophila Hsp70 mRNA translation: 5'UTR secondary structure specifically inhibits heat shock protein mRNA translation. Nucleic Acids Res 24:2441-2449.
Holcik M, Sonenberg N. 2005. Translational control in stress and apoptosis. Nat Rev Mol Cell Biol 6:318-327.
Holmberg CI, Hietakangas V, Mikhailov A, Rantanen JO, Kallio M, Meinander A, Hellman J, Morrice N, MacKintosh C, Morimoto RI, Eriksson JE, Sistonen L. 2001. Phosphorylation of serine 230 promotes inducible transcriptional activity of heat shock factor 1. Embo J 20:3800-3810.
Holmberg CI, Roos PM, Lord JM, Eriksson JE, Sistonen L. 1998. Conventional and novel PKC isoenzymes modify the heat-induced stress response but are not activated by heat shock. J Cell Sci 111 ( Pt 22):3357-3365.
Holmberg CI, Tran SE, Eriksson JE, Sistonen L. 2002. Multisite phosphorylation provides sophisticated regulation of transcription factors. Trends Biochem Sci 27:619-627.
Hung JJ, Cheng TJ, Lai YK, Chang MD. 1998. Differential activation of p38 mitogen-activated protein kinase and extracellular signal-regulated protein kinases confers cadmium-induced HSP70 expression in 9L rat brain tumor cells. J Biol Chem 273:31924-31931.
Jacquier-Sarlin MR, Jornot L, Polla BS. 1995. Differential expression and regulation of hsp70 and hsp90 by phorbol esters and heat shock. J Biol Chem 270:14094-14099.
Jerome V, Leger J, Devin J, Baulieu EE, Catelli MG. 1991. Growth factors acting via tyrosine kinase receptors induce HSP90 alpha gene expression. Growth Factors 4:317-327.
Jerome V, Vourc'h C, Baulieu EE, Catelli MG. 1993. Cell cycle regulation of the chicken hsp90 alpha expression. Exp Cell Res 205:44-51.
Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC, Burrows FJ. 2003. A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407-410.
Kelland LR, Sharp SY, Rogers PM, Myers TG, Workman P. 1999. DT-Diaphorase expression and tumor cell sensitivity to 17-allylamino, 17-demethoxygeldanamycin, an inhibitor of heat shock protein 90. J Natl Cancer Inst 91:1940-1949.
Kiang JG, Gist ID, Tsokos GC. 2000. Regulation of heat shock protein 72 kDa and 90 kDa in human breast cancer MDA-MB-231 cells. Mol Cell Biochem 204:169-178.
Kim J, Nueda A, Meng YH, Dynan WS, Mivechi NF. 1997. Analysis of the phosphorylation of human heat shock transcription factor-1 by MAP kinase family members. J Cell Biochem 67:43-54.
Kim SA, Yoon JH, Lee SH, Ahn SG. 2005. Polo-like kinase 1 phosphorylates HSF1 and mediates its nuclear translocation during heat stress. J Biol Chem.
Kline MP, Morimoto RI. 1997. Repression of the heat shock factor 1 transcriptional activation domain is modulated by constitutive phosphorylation. Mol Cell Biol 17:2107-2115.
Kozak M. 1989. The scanning model for translation: an update. J Cell Biol 108:229-241.
Kozak M. 1991. Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem 266:19867-19870.
Kozak M. 2002. Pushing the limits of the scanning mechanism for initiation of translation. Gene 299:1-34.
Kwon HJ, Yoshida M, Muroya K, Hattori S, Nishida E, Fukui Y, Beppu T, Horinouchi S. 1995. Morphology of ras-transformed cells becomes apparently normal again with tyrosine kinase inhibitors without a decrease in the ras-GTP complex. J Biochem (Tokyo) 118:221-228.
Lai MT, Huang KL, Chang WM, Lai YK. 2003. Geldanamycin induction of grp78 requires activation of reactive oxygen species via ER stress responsive elements in 9L rat brain tumour cells. Cell Signal 15:585-595.
Laroia G, Cuesta R, Brewer G, Schneider RJ. 1999. Control of mRNA decay by heat shock-ubiquitin-proteasome pathway. Science 284:499-502.
Le Brazidec JY, Kamal A, Busch D, Thao L, Zhang L, Timony G, Grecko R, Trent K, Lough R, Salazar T, Khan S, Burrows F, Boehm MF. 2004. Synthesis and biological evaluation of a new class of geldanamycin derivatives as potent inhibitors of Hsp90. J Med Chem 47:3865-3873.
Lee AS. 2001. The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci 26:504-510.
Lindquist S, Craig EA. 1988. The heat-shock proteins. Annu Rev Genet 22:631-677.
Lis J, Wu C. 1993. Protein traffic on the heat shock promoter: parking, stalling, and trucking along. Cell 74:1-4.
Liu X, Ye L, Wang J, Fan D. 1999. Expression of heat shock protein 90 beta in human gastric cancer tissue and SGC7901/VCR of MDR-type gastric cancer cell line. Chin Med J (Engl) 112:1133-1137.
Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408.
Lu A, Ran R, Parmentier-Batteur S, Nee A, Sharp FR. 2002. Geldanamycin induces heat shock proteins in brain and protects against focal cerebral ischemia. J Neurochem 81:355-364.
Maloney A, Workman P. 2002. HSP90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther 2:3-24.
McGarry TJ, Lindquist S. 1985. The preferential translation of Drosophila hsp70 mRNA requires sequences in the untranslated leader. Cell 42:903-911.
Mignone F, Gissi C, Liuni S, Pesole G. 2002. Untranslated regions of mRNAs. Genome Biol 3:REVIEWS0004.
Morano KA, Thiele DJ. 1999. Heat shock factor function and regulation in response to cellular stress, growth, and differentiation signals. Gene Expr 7:271-282.
Morimoto RI. 1998. Regulation of the heat shock transcriptional response: cross talk between a family of heat shock factors, molecular chaperones, and negative regulators. Genes Dev 12:3788-3796.
Morimoto RI, Sarge KD, Abravaya K. 1992. Transcriptional regulation of heat shock genes. A paradigm for inducible genomic responses. J Biol Chem 267:21987-21990.
Murata T, Morita N, Hikita K, Kiuchi K, Kaneda N. 2005. Recruitment of mRNA-destabilizing protein TIS11 to stress granules is mediated by its zinc finger domain. Exp Cell Res 303:287-299.
Nishizuka Y. 1995. Protein kinase C and lipid signaling for sustained cellular responses. Faseb J 9:484-496.
Nomura M, Nomura N, Yamashita J. 2005. Geldanamycin-induced degradation of Chk1 is mediated by proteasome. Biochem Biophys Res Commun 335:900-905.
Nuccitelli R, Yim DL, Smart T. 1993. The sperm-induced Ca+2 wave following fertilization of the Xenopus egg requires the production of Ins(1, 4, 5)P3. Dev Biol 158:200-212.
Pearl LH, Prodromou C. 2001. Structure, function, and mechanism of the Hsp90 molecular chaperone. Adv Protein Chem 59:157-186.
Picard D. 2002. Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci 59:1640-1648.
Pirkkala L, Nykanen P, Sistonen L. 2001. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. Faseb J 15:1118-1131.
Pratt WB. 1998. The hsp90-based chaperone system: involvement in signal transduction from a variety of hormone and growth factor receptors. Proc Soc Exp Biol Med 217:420-434.
Pratt WB, Toft DO. 2003. Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228:111-133.
Price BD, Calderwood SK. 1991. Ca+2 is essential for multistep activation of the heat shock factor in permeabilized cells. Mol Cell Biol 11:3365-3368.
Prodromou C, Roe SM, O'Brien R, Ladbury JE, Piper PW, Pearl LH. 1997a. Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65-75.
Prodromou C, Roe SM, Piper PW, Pearl LH. 1997b. A molecular clamp in the crystal structure of the N-terminal domain of the yeast Hsp90 chaperone. Nat Struct Biol 4:477-482.
Rebbe NF, Hickman WS, Ley TJ, Stafford DW, Hickman S. 1989. Nucleotide sequence and regulation of a human 90-kDa heat shock protein gene. J Biol Chem 264:15006-15011.
Ringner M, Krogh M. 2005. Folding Free Energies of 5'-UTRs Impact Post-Transcriptional Regulation on a Genomic Scale in Yeast. PLoS Comput Biol 1:e72.
Roe SM, Prodromou C, O'Brien R, Ladbury JE, Piper PW, Pearl LH. 1999. Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J Med Chem 42:260-266.
Ryabova LA, Hohn T. 2000. Ribosome shunting in the cauliflower mosaic virus 35S RNA leader is a special case of reinitiation of translation functioning in plant and animal systems. Genes Dev 14:817-829.
Sarge KD, Murphy SP, Morimoto RI. 1993. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13:1392-1407.
Schulte TW, Akinaga S, Soga S, Sullivan W, Stensgard B, Toft D, Neckers LM. 1998. Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biologic activities with geldanamycin. Cell Stress Chaperones 3:100-108.
Schulte TW, Blagosklonny MV, Romanova L, Mushinski JF, Monia BP, Johnston JF, Nguyen P, Trepel J, Neckers LM. 1996. Destabilization of Raf-1 by geldanamycin leads to disruption of the Raf-1-MEK-mitogen-activated protein kinase signalling pathway. Mol Cell Biol 16:5839-5845.
Schulte TW, Neckers LM. 1998. The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 42:273-279.
Shen Y, Liu J, Wang X, Cheng X, Wang Y, Wu N. 1997. Essential role of the first intron in the transcription of hsp90beta gene. FEBS Lett 413:92-98.
Shu CW, Cheng NL, Chang WM, Tseng TL, Lai YK. 2005. Transactivation of hsp70-1/2 in geldanamycin-treated human non-small cell lung cancer H460 cells: involvement of intracellular calcium and protein kinase C. J Cell Biochem 94:1199-1209.
Soga S, Shiotsu Y, Akinaga S, Sharma SV. 2003. Development of radicicol analogues. Curr Cancer Drug Targets 3:359-369.
Soncin F, Asea A, Zhang X, Stevenson MA, Calderwood SK. 2000. Role of calcium activated kinases and phosphatases in heat shock factor-1 activation. Int J Mol Med 6:705-710.
Sreedhar AS, Csermely P. 2004. Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther 101:227-257.
Sreedhar AS, Kalmar E, Csermely P, Shen YF. 2004a. Hsp90 isoforms: functions, expression and clinical importance. FEBS Lett 562:11-15.
Sreedhar AS, Nardai G, Csermely P. 2004b. Enhancement of complement-induced cell lysis: a novel mechanism for the anticancer effects of Hsp90 inhibitors. Immunol Lett 92:157-161.
Sreedhar AS, Srinivas UK. 2002. Activation of stress response by ionomycin in rat hepatoma cells. J Cell Biochem 86:154-161.
Stebbins CE, Russo AA, Schneider C, Rosen N, Hartl FU, Pavletich NP. 1997. Crystal structure of an Hsp90-geldanamycin complex: targeting of a protein chaperone by an antitumor agent. Cell 89:239-250.
Strehler EE, Treiman M. 2004. Calcium pumps of plasma membrane and cell interior. Curr Mol Med 4:323-335.
Takayama S, Reed JC, Homma S. 2003. Heat-shock proteins as regulators of apoptosis. Oncogene 22:9041-9047.
Theodorakis NG, Morimoto RI. 1987. Posttranscriptional regulation of hsp70 expression in human cells: effects of heat shock, inhibition of protein synthesis, and adenovirus infection on translation and mRNA stability. Mol Cell Biol 7:4357-4368.
Voellmy R. 1994. Transduction of the stress signal and mechanisms of transcriptional regulation of heat shock/stress protein gene expression in higher eukaryotes. Crit Rev Eukaryot Gene Expr 4:357-401.
Weizsaecker M, Deen DF, Rosenblum ML, Hoshino T, Gutin PH, Barker M. 1981. The 9L rat brain tumor: description and application of an animal model. J Neurol 224:183-192.
Welch WJ. 1992. Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev 72:1063-1081.
Westwood JT, Clos J, Wu C. 1991. Stress-induced oligomerization and chromosomal relocalization of heat-shock factor. Nature 353:822-827.
Whitesell L, Mimnaugh EG, De Costa B, Myers CE, Neckers LM. 1994. Inhibition of heat shock protein HSP90-pp60v-src heteroprotein complex formation by benzoquinone ansamycins: essential role for stress proteins in oncogenic transformation. Proc Natl Acad Sci U S A 91:8324-8328.
Whitesell L, Shifrin SD, Schwab G, Neckers LM. 1992. Benzoquinonoid ansamycins possess selective tumoricidal activity unrelated to src kinase inhibition. Cancer Res 52:1721-1728.
Wong HR, Dunsmore KE, Page K, Shanley TP. 2005. Heat shock-mediated regulation of MKP-1. Am J Physiol Cell Physiol 289:C1152-1158.
Workman P. 2004a. Altered states: selectively drugging the Hsp90 cancer chaperone. Trends Mol Med 10:47-51.
Workman P. 2004b. Combinatorial attack on multistep oncogenesis by inhibiting the Hsp90 molecular chaperone. Cancer Lett 206:149-157.
Wu C. 1995. Heat shock transcription factors: structure and regulation. Annu Rev Cell Dev Biol 11:441-469.
Xia W, Voellmy R. 1997. Hyperphosphorylation of heat shock transcription factor 1 is correlated with transcriptional competence and slow dissociation of active factor trimers. J Biol Chem 272:4094-4102.
Yahara I, Minami Y, Miyata Y. 1998. The 90-kDa stress protein, Hsp90, is a novel molecular chaperone. Ann N Y Acad Sci 851:54-60.
Young JC, Moarefi I, Hartl FU. 2001. Hsp90: a specialized but essential protein-folding tool. J Cell Biol 154:267-273.
Yufu Y, Nishimura J, Nawata H. 1992. High constitutive expression of heat shock protein 90 alpha in human acute leukemia cells. Leuk Res 16:597-605.
Zhang SL, Yu J, Cheng XK, Ding L, Heng FY, Wu NH, Shen YF. 1999. Regulation of human hsp90alpha gene expression. FEBS Lett 444:130-135.
Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R. 1998. Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471-480.
Zuker M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406-3415.
Zuo J, Rungger D, Voellmy R. 1995. Multiple layers of regulation of human heat shock transcription factor 1. Mol Cell Biol 15:4319-4330.