簡易檢索 / 詳目顯示

研究生: 馬有謙
Ma, Yu-Qian
論文名稱: 具動態性能改良機制之十位元1-GS/s 電流引導式數位類比轉換器
A 10-Bit 1-GS/s Current-Steering DAC with Improved Dynamic-Performance Techniques
指導教授: 朱大舜
Chu, Ta-Shun
口試委員: 吳仁銘
Wu, Jen-Ming
王毓駒
Wang, Yu-Jiu
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 98
中文關鍵詞: 電流引導式數位類比轉換器不匹配誤差分析隨機化平均技巧電流源不匹配考量數位碼補償電路
外文關鍵詞: RRHS, Gm Cell, Always-on Cascode Stage, SFDR / IM3, Floor Planning
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著通訊系統日新月異的發展以及因應 SoCSoC 的整合需求 的整合需求 ,伴隨精準且大量資料傳輸之數位類比轉換器(DACs)已被廣泛地使用,近來又以高速、高線性度電流引導式數位類比轉換器之架構最廣泛使用,因此在電路的趨勢也走向用更小的面積去達到更高速、高動態規格的轉換器。

    而為了達到高SFDR的規格要解決諸多非線性的問題,電流源不匹配誤差、電流源有限阻抗、高速暫態切換等…。其中又以電流源不匹配引起的誤差會影響靜態與動態的效能,因此本篇論文提出一種RRHS (Random Rotation-Based Hybrid-Weighted Selector) DEM之邏輯,讓諧波失真引起的誤差能更有效轉換為與輸入數位碼無關的隨機雜訊,也能在更小的面積下達到高精準度之高速數位類比轉換器;在電流源有限阻抗引用Always-on Cascode Stage減少切換阻抗的影響;在暫態切換則採用適度擺幅(Moderate-Swing)去切換開關,有效降低因寄生電容對電流路徑產生的波動。

    本論文實現一個十位元具動態性能改良之電流引導式數位類比轉換器,採用TSMC 65 nm、1P9M互補金氧半導體的製程環境,電流源供應電壓為2.5V其餘則為1.2V,雙端差動振福輸出為0.8V,操作在輸入訊號頻寬至少50MHz以及取樣頻率在1GHz下,透過RRHS DEM、Always-on Cascode Stage、Moderate-Swing等技巧,能將SFDR從不到60dB提升到至少70dB以上,也藉此完成一高動態規格之電流引導式數位類比轉換器。


    With the rapid development of communication systems and the need for integration of SoCs, the digital-to-analog converters (DACs) with accurate and massive data transmission have been widely used. Recently, high-speed and high-linearity current-steering digital-to-analog converters are widely used architecture. So the trend of the circuit is also going to use a smaller area to achieve a converter with higher speed, high dynamic specification.

    In order to achieve high specification of SFDR (SpuriousSpurious -Free ree ree ree Dynamic ynamic ynamic ynamic ynamic ynamic Rangeange ange), many non-linear problems need to be solved, such as the mismatch errors among current sources, finite impedance of current sources, high-speed switching transients, etc… The mismatch errors caused by the current source will affect the performance of both static and dynamic. Therefore, this thesis proposes a mechanism of RRHS (Random Rotation-Based Hybrid-Weighted Selector) DEM so that the errors caused by harmonic distortions can be converted more effectively to random white noise which is independent of the input digital code. It can also achieve high-accuracy and high-speed digital-to-analog converters in a smaller area. The use of the Always-on Cascode Stage to reduce the influence of the switching impedance in the finite impedance of the current sources. For high-speed switching transients, the skill of Moderate-Swing which effectively reduces the fluctuation of the current path due to parasitic capacitances is used to switch the switches.

    In this thesis, a 10-bit current-steering digital-to-analog converter with improved dynamic-performance is implemented. The device is fabricated with TSMC 65 nm and 1P9M complementary MOSFETs. Through the RRHS DEM, Always-on Cascode Stage, Moderate-Swing and other techniques, SFDR can be improved from less than 60dB to at least more than 70dB, also completing a high dynamic specifications of the current-steering digital analog-to-digital converter.

    目錄 摘要 i Abstract ii 目錄 iii 圖目錄 vi 表目錄 x 第1章 序論 1 1.1 研究動機 1 1.2 論文架構 3 第2章 電流引導式數位類比轉換器設計考量 4 2.1 簡介 4 2.1.1 工作原理 4 2.1.2 非線性分類 6 2.2 靜態/動態規格推導 9 2.2.1 差動非線性誤差(DNL) / 累積非線性誤差(INL) 11 2.2.2 增益誤差(Gain Error) 15 2.2.3 信號對雜訊比(SNR) / 信號對雜訊及諧波失真比(SNDR) 16 2.2.4 SFDR (Spurious-Free Dynamic Range) 19 2.2.5 IM3 (Two-Tone 3rd Intermodulation Distortion) 23 2.3 不匹配誤差分析(Mismatch Errors Analysis) 24 2.3.1 隨機誤差(Random Errors) 24 2.3.1.1 電流源(Current Sources) 24 2.3.1.2 電流源開關(Current Source Switches) 27 2.3.2 系統誤差(Systematic Errors) 28 2.3.2.1 邊界效應(Edge Effects) 28 2.3.2.2 供應電壓源壓降(IR Drop in Supply Line) 29 2.3.2.3 梯度誤差分佈(Gradient Errors Distribution) 31 2.4 Code-Dependent Switching Transients (CDSTs) 33 2.4.1 時脈偏移(Clock Skew) 34 2.4.2 時脈饋入(Clock Feedthrough) 34 2.4.3 開關共源節點波動(Fluctuations at Switch Common-Source node) 35 2.5 Code-Dependent Loading Variation (CDLV) 36 第3章 提高規格性能技巧 37 3.1 校正技巧(Calibration Techniques) 37 3.1.1 前景式校正(Foreground Calibration) 37 3.1.2 背景式校正(Background Calibration) 40 3.1.3 輸出阻抗補償(Output Impedance Compensation) 43 3.2 隨機化平均技巧(Random-Averaging Techniques) 45 3.2.1 RRUS (Random Rotation-Based Unary-Weighted Selector) 48 3.2.2 RRBS (Random Rotation-Based Binary-Weighted Selector) 51 3.2.3 Segmentation DEM 54 3.3 重新序列技巧(Resequencing Techniques) 57 3.4 歸零技巧(Return-to-Zero Techniques) 59 3.4.1 Signal Tone Anti-attenuation 59 3.4.2 Code-Independent 61 第4章 電路實現 64 4.1 DAC架構簡介 64 4.2 RRHS (Random Rotation-Based Hybrid Weighted Selector) 65 4.3 Gm Cell 70 4.3.1 Gm Cell設計 70 4.3.2 電流源不匹配考量 73 4.3.3 電流源開關 77 4.3.4 數位碼補償電路(Code Compensation Circuits) 79 4.3.5 Always-on Cascode Stage 81 4.4 Switch Drivers 83 4.5 Local Bias 85 第5章 模擬結果與量測規劃 87 5.1 參數模擬 87 5.1.1 INL / DNL 87 5.1.2 SFDR / IM3 88 5.1.3 規格表 89 5.2 Floor Planning 90 5.3 量測規劃 92 第6章 結論 94 6.1 總結 94 6.2 未來展望 94 參考文獻 96

    [1] Wei-Hsin Tseng, “High-Speed Current-Sterring Digital-to-Analog Converters,” A Dissertation for the Degree of Doctor of Philosophy in Electronics Enginering of National Chiao-Tung University,2011

    [2] Wei-Te Lin, “Dynamic-Performance-Improved Techniques for Nyquist-Rate Current-Steering DACs,” A Dissertation for the Degree of Doctor of Philosophy in Electronical Engineering of National Cheng-Kung University,2013

    [3] Wei-Cheng Hung, “1-V 10-bit 2GSample/s D/A Converter based on Precision Current Reference in 90-nm CMOS,” A Thesis for the Degree of Master of Science in Electronical Engineering of National Cheng-Kung University,2013

    [4] Yi-An Chao, “A 12-bit 100MHz DAC with Dynamic Element Matching and Output Impedance Calibration” A Thesis for the Degree of Master of Science in Electronical Engineering of National Cheng-Kung University,2010

    [5] Li-Fan Wei, “A 10-Bit 1-GS/s Current-Steering DAC with Foreground Calibration Method,” A Thesis for the Degree of Master of Science in Electronics Engineering of National Tsing-Hua University,2017

    [6] Xin-hao Wang, “1-V 10-bit 2GSample/s D/A Converter based on Precision Current Reference in 90-nm CMOS,” A Thesis for the Degree of Master of Science in Electronics Engineering of National Central University,2008

    [7] Ian Galton, “Why Dynamic-Element-Matching DACs Work,” IEEE Transactions on Circuits and Systems II: Express Briefs,2010, pp. 69-74

    [8] Tao Chen, Georges G. E. Gielen, “A 14-bit 200-MHz Current-Steering DAC With Switching-Sequence Post-Adjustment Calibration” IEEE Journal of Solid-State Circuits,2007, pp. 2386-2394

    [9] Wei-Hsin Tseng, Pao-Cheng Chiu, “A 960MS/s DAC with 80dB SFDR in 20nm CMOS for Multi-Mode Baseband Wireless Transmitter” Symposium on VLSI Circuits Digest of Technical Papers,2014, pp. 1-2

    [10] C-H. Lin, F. van der Goes, J. Westra, J. Mulder, Y. Lin, E. Arslan, E. Ayranci, X. Liu, K. Bult, “A 12b 2.9GS/s DAC with IM3 <-60dBc Beyond 1GHz in 65nm CMOS” IEEE International Solid-State Circuits Conference - Digest of Technial Papers,2009, pp. 74-75,75a

    [11] Wei-Te Lin, Hung-Yi Huang, Tai-Haur Kuo, “A 12-bit 40 nm DAC Achieving SFDR > 70 dB at 1.6 GS/s and IMD < –61dB at 2.8 GS/s With DEMDRZ Technique” IEEE Journal of Solid-State Circuits,2014, pp. 708-717

    [12] Yonghua Cong, R. L. Geiger, “Switching Sequence Optimization for Gradient Error Compensation in Thermometer-Decoded DAC Arrays” IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing,2000, pp. 585-595

    [13] Marcel J. M. Pelgrom, Aad C. J. Duinmaijer, “Matching Properties of MOS Transistors” Solid-State Circuits Conference, 1988. ESSCIRC '88. Fourteenth European,1988, pp. 327-330

    [14] Wei-Te Lin, Tai-Haur Kuo, “A Compact Dynamic-Performance-Improved Current-Steering DAC With Random Rotation-Based Binary-Weighted Selection” IEEE Journal of Solid-State Circuits,2012, pp. 444-453

    [15] Kok Lim Chan, Nevena Rakuljic, Ian Galton, “Segmented Dynamic Element Matching for High-Resolution Digital-to-Analog Conversion” IEEE Transactions on Circuits and Systems I: Regular Papers,2008, pp. 3383-3392

    [16] Pieter Palmers, Michiel Steyaert, “A 11 mW 68dB SFDR 100 MHz bandwidth ∆Σ-DAC based on a 5-bit 1GS/s core in 130nm” ESSCIRC 2008 - 34th European Solid-State Circuits Conference,2008, pp. 214-217

    [17] A. van den Bosch, M. A. F. Borremans, M. S. J. Steyaert, W. Sansen, “A 10-bit 1-GSample/s Nyquist Current-Steering CMOS D/A Converter” IEEE Journal of Solid-State Circuits,2001, pp. 315-324

    [18] Chi-Hung Lin, Frank M. L. van der Goes, Jan R. Westra, Jan Mulder, Yu Lin, Erol Arslan, Emre Ayranci, Xiaodong Liu, Klaas Bult, “A 12 bit 2.9 GS/s DAC With IM3 60 dBc Beyond 1 GHz in 65 nm CMO” IEEE Journal of Solid-State Circuits,2009, pp. 3285-3293

    [19] TSMC Confidential Information 782037 GLOBAL UNICHIP CORP,2010

    [20] Behzad Razavi, “Design of Analog CMOS Integrated Circuits” McGraw-Hill College,2001

    [21] Doris, Kostas, van Roermund, Arthur, Leenaerts, Domine, “Wide-Bandwidth High Dynamic range D/A Converters” The Springer International Series in Engineering and Computer Science,2006

    [22] Gildas Leger, “Doubly-segmented current-steering DAC calibration” IEEE International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS),2014 pp. 1-6

    [23] H. T. Jensen, I. Galton, “A performance analysis of the partial randomization dynamic element matching DAC architecture” IEEE Journal of Solid-State Circuits,1997, pp. 9-12

    [24] Kok Lim Chan, Jianyu Zhu, Ian Galton, “A 150MS/s 14-bit Segmented DEM DAC with Greater than 83dB of SFDR Across the Nyquilst band” IEEE Symposium on VLSI Circuits,2007, pp. 200-201

    [25] W. -C. Kim, J. -G. Kim, K. -H. Ahn, G. -J. Kim, S. -H. Park, S. -T. Ryu, “Calibration-spur reduction in current-steering DAC utilising digital-and-analogue hybrid return-to-zero (HRZ) method” IET Journals & Magazines,2015, pp. 1649-1650

    QR CODE