簡易檢索 / 詳目顯示

研究生: 黃詩雯
Huang, Shu-Wen
論文名稱: 高導磁率鈷鉿鉭磁性薄膜及其整合電感特性
Development of high permeability Co-Hf-Ta magnetic thin films and its application to inductors
指導教授: 杜正恭
Duh, Jenq-Gong
口試委員: 金重勳
陳士堃
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 85
中文關鍵詞: 導磁率磁性薄膜電感飽和電流電磁場模擬
外文關鍵詞: permeability, magnetic thin film, inductor, saturation current, electromagnetic field simulation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗選用鈷-鉿-鉭磁性膜作為研究之主題。適量鉿元素的添加能有效地抑制鈷晶粒的成長,降低薄膜磁晶異向性,得到較小的異向性場(HK)及矯頑場(HC)。於最佳鉿含量2.81 at.% (Co91.8Hf2.81Ta5.41)時,鈷-鉿-鉭膜具有優異的軟磁性質:高飽和磁化量(4πMS ~ 13.6 kG)及低矯頑場(HC ~ 0.6 Oe)。此外,其導磁率於1-500 MHz的頻帶範圍有800以上的表現。
    將鈷-鉿-鉭鐵磁膜與繞製的平面電感整合,此整合電感在頻率為5 MHz的感值提升達25 %,且飽和電流的表現符合現今業界的需求。電感之直流特性表現與電感結構及薄膜特性有相當密切的關係,由模擬及實驗的結果可知感值的提升與飽和電流或高頻之表現間相互抗衡,需根據電感元件操作之需求作選擇。
    另一方面,本實驗以Maxwell電磁模擬軟體模擬電感之磁通分佈及直流特性。採用商業化之功率電感作為模擬的模型,並以高導磁率(μ)之鈷-鉿-鉭與高異向性場(HK)之鐵-鉿-氧磁性膜取代原先由鐵氧體燒結而成的工字型電感結構之上遮蔽鼓。模擬結果顯示:HK ~ 100 Oe,厚度5 μm之鐵-鉿-氧鐵磁薄膜能夠承受較大電流的施加,避免電感感值於大電流下有大幅的波動,具備應用於功率電感微型化之潛力。


    Effects of the Hf content in Co-Hf-Ta thin films on the microstructure and magnetic properties were investigated in this study. Appropriate Hf addition can effectively refine the Co grain size, leading to the reduced magneto-crystalline anisotropy. The film with optimal Hf concentration of 2.81 at.% exhibits excellent soft magnetic properties: high saturation magnetization (4πMS ~ 13.6 kG), and low coercivity (HC ~ 0.6 Oe). The effective permeability of the film reaches 800 and remains constant up to 1 GHz.
    A planar inductor integrated with Co-Hf-Ta ferromagnetic films was fabricated. The as-deposited Co-Hf-Ta film on the Al2O3 substrate with a thickness of 3 μm exhibits large saturation magnetization (4πMS) of 13.4 kG, and low coercivity (HC) of 0.4 Oe. The integrated inductor has current-carrying capability of more than 3 A and the inductance (2.23 µH) 25 % more than the air-core inductor (1.78 µH) at 5 MHz. In addition, there is a trade-off between the inductance enhancement and the saturation current or the high-frequency performance.
    In addition, Co-Hf-Ta and Fe-Hf-O thin films are chosen to replace the top-drum for the commercial inductor. According to the simulation results, the Co-Hf-Ta thin film with high permeability of 800 effectively enhances the inductance up to 122 % at minor currents, while the 5µm thick Fe-Hf-O film with high HK of 100 Oe has capability for eliminating dramatic variations in the inductance at major imposed currents.

    List of Tables Figures Caption Abstract Chapter 1 Introduction Chapter 2 Literature Survey 2.1 Magnetic Materials 2.1.1 Magnetic moments of electrons and atoms 2.1.2 Ferromagnetism 2.1.3 Hysteresis loop 2.1.4 Magnetocrystalline anisotropy 2.1.5 Grain-size dependence of coercivity and permeability 2.2 Application of Magnetic Thin Films to Power Inductors 2.2.1 Background 2.2.2 Material requirements 2.2.3 Magnetic core materials 2.2.3.1 Ferrites 2.2.3.2 Fe-Co-based materials 2.2.3.3 Fe-based materials 2.2.3.4 Co-based materials 2.2.4 Inductance 2.2.5 Saturation current 2.2.6 Energy loss 2.3 Electromagnetic Field Simulation Chapter 3 Experimental and Simulation Procedures 3.1 Film Deposition Process 3.2 Integrated Planar Inductor Fabrication Process 3.3 Measurement and Analysis 3.3.1 Composition analysis 3.3.2 Microstructure and phase identification 3.3.3 Observation of magnetic domain structure 3.3.4 Measurement of resistivity and thickness 3.3.5 Measurement of static magnetic properties 3.3.6 Evaluation of permeability 3.3.7 Measurement of inductor characteristics 3.4 Electromagnetic Field Simulation Process Chapter 4 Results and Discussion 4.1 Theoretical Background-Simulation 4.1.1 The feasibility of the ferromagnetic film 4.1.2 Material selection 4.2 Co-Hf-Ta Magnetic Thin Films 4.2.1 Composition and microstructure analysis 4.2.2 Dependence of anisotropy field and coercivity on the Hf content 4.2.3 Magnetic and electrical properties 4.3 Application of the Co-Hf-Ta Film to the Planar Inductor 4.4 Simulation -Application of Ferromagnetic Thin Films to the Commercial Inductor Chapter 5 Conclusions References

    [1] K.H. Kim, J. Kim, H. J. Kim, S. H. Han, H. J. Kim, IEEE Trans. Magn. 38 (2002) 3162.
    [2] Y. Zhou, Z. M. Zhou, Y. Cao, X.Y. Gao, W. Ding, J. Magn. Magn. Mater. 320 (2008) e963.
    [3] D. H. Shin, C. S. Kim, J. H. Jeong, S.E. Nam, H.J. Kim, IEEE Trans. Magn. 35 (1999) 3511.
    [4] T. Sato, E. Komai, K. Yamasawa, IEEE Trans. Magn. 33 (1997) 3312.
    [5] M. Mino, T. Yachi, A. Tago, K. Yanagisawa, K. Sakakibara, IEEE Trans. Magn. 28 (1992) 1969.
    [6] S. Chikazumi, Physics of Magnetism, Wiley, New York (1964), p. 329.
    [7] D. B. Chrisey, P. C. Dorsey, J. D. Adams, H. Buhay, in: M. H. Francombe (Ed.), Handbook of Thin Film Devices, 4 (2000), 143.
    [8] R. E. JONES JR, Acta Mater. 46 (1998) 3805.
    [9] Y. Arimoto, K. Ohkubo, T. Fumoto, H. Yamasaki, IEEE Trans. Magn. 8 (1993) 528.
    [10] K. Ohkubo, Y. Arimoto, T. Fumoto, H. Yamasaki, IEEE Trans. Magn. 29 (1993) 2530.
    [11] Y. Hayakawa and A. Makino, Nanostruct. Mater. 6 (1995) 989.
    [12] K. I. Nishijima, M. Hidaka, K. Yamasawa, A. Saito, Elctronics and Communications in Japan, 78 (1995) 72.
    [13] D. S. Gardner, G. Schrom, P. Hazucha, F. Paillet, T. Karnik, S. Borkar, IEEE Trans. Magn. 43 (2007) 2615.
    [14] C. H. Lee, D. H. Shin, D. H. Ahn, S. E. Nam, H. J. Kim, J. Appl. Phys. 85 (1999) 4898.
    [15] S. W. Huang, Y. T. Lai, J. G. Duh, Appl. Surf. Sci. 257 (2011) 2042.
    [16] B. D. Cullity, C. D. Graham, Second Ed., Wiley-IEEE Press, U.S.A., 2008.
    [17] G. Herzer, IEEE Trans. Magn. 26 (1990) 1397.
    [18] G. Herzer, Mater. Sci. Eng. A133 (1991) 1.
    [19] R. M. Bozorth, Ferromagnetizm, Princeton, N. J. D. Van Nostrand, ch. 18 (1951) 811.
    [20] W. Shen, “Design of high-density transformers for high-frequency high-power converters”, Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical Engineering, 2006.
    [21] V. Korenivski, J. Magn. Magn. Mater. 215 (2000) 800.
    [22] X. Liu and A. Morisako, J. Appl. Phys. 103 (2008) 07E726.
    [23] X. Wang, F. Zheng, Z. Liu, X. Liu, D. Wei, and F. Wei, J. Appl. Phys. 105 (2009) 07B714.
    [24] A. Makino, A. Inoue, and T. Masumoto, Mater. Trans. JIM 36 (1995) 924.
    [25] Michal Szyper, “Inductance Measurement”, copyright 2000 CRC Press LLC.
    (http://www.engnetbase.com)
    [26] http://en.wikipedia.org/wiki/Inductance
    [27] J. Y. Park, M. G. Allen, Electronic Components and Technology Conference, 1996.
    [28] http://www.coilws.com/index.php?main_page=page&id=104
    [29] http://www.micrometals.com/material/pc_coreloss_txt.html
    [30] ANSYS, Electromagnetic field simulation solutions brochure
    (http://www.ansys.com/staticassets/ANSYS/staticassets/resourcelibrary/brochure/electromagnetics-brochure.pdf)
    [31] J. I. Goldstein, D. E. Newbury, P. Echlin, D. C. Joy, C. Fiori, E. Lifshin, Scanning Electron and X-ray Microanalysis, Plenum Press (1981).
    [32] M. Yamaguchi, Y. Miyazawa, K. Kaminish, H. Kikuchi, S. Yabukami, K. I. Arai, and T. Suzaki, J. Magn. Magn. Mater. 268 (2004) 170.
    [33] M. Yamaguchi, O. Acher, Y. Miyazawa, K. I. Arai, and M. Ledieu, J. Magn. Magn. Mater. 242 (2002) 970.
    [34] Pain, M. Ledieu, O. Acher, A. L. Adenot, and F. uverger, J. Appl. Phys. 85 (1999) 5151.
    [35] Y. Liu, Z. W. Liu, C. Y. Tan, C. K. Ong, J. Appl. Phys. 100 (2006) 093912.
    [36] G. Herzer, ferromagnets, IEEE Trans. Magn. 25 (1989) 3327.
    [37] B. Peng, Q. Y. Xie, B. K. Shen, W. X. Zhang, H. C. Jiang, W. L. Zhang, J. Non-Cryst. Solids 354 (2008) 978.
    [38] P. Zou, W. Yu, J. A. Bain, IEEE Trans. Magn. 38 (2002) 3501.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE