簡易檢索 / 詳目顯示

研究生: 施宥仲
Shih, You-Jhong
論文名稱: 檸檬酸誘導東西岸台灣眼鏡蛇心臟毒素二聚體形成 之生化及細胞分析
Role of citrate-induced dimerization of Cardiotoxin from East and West Taiwan Cobra on their binding to heparin cell surface
指導教授: 吳文桂
Wu, Wen-Guey
口試委員: 李紹禎
Lee, Shao-chen
簡昆鎰
Chien, Kun-Yi
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 45
中文關鍵詞: 眼鏡蛇表面電漿共振肝素高效液相層析儀檸檬酸二聚體
外文關鍵詞: Cobra, SPR, Heparin, HPLC, Citrate, Dimer
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 台灣眼鏡蛇以地區分為東岸和西岸眼鏡蛇,東岸眼鏡蛇體型較大且蛇腹全黑,西岸體型較小且蛇腹為白色或灰色,先前研究發現,東西岸眼鏡蛇心臟毒素也有地區上的分別,西岸白腹眼鏡蛇毒液中含有較多的心臟毒素A2和A4,但缺少A6,這一發現在東岸黑腹眼鏡蛇毒液則剛好相反。
    陰離子檸檬酸是毒液中的主要成分,大約有50 mM的檸檬酸在眼鏡蛇毒液中,檸檬酸對毒性的作用除了對毒液中毒素的陽離子依賴的抑制作用以外,其他作用了解甚少。先前的研究發現,檸檬酸離子結合到心臟毒素三指環II區末端的Lys-23和Lys-31位置穩定了心臟毒素A3二聚體結構,並且在功能重要的環I和II區疏水接觸,根據序列比對觀察,發現A3和A6都有Lys-23和Lys-31的保留序列,但A2和A4沒有Lys-31的序列,取而代之的是Thr-31,因此我們想知道在檸檬酸緩衝液下,肝素對於黑腹、白腹心臟毒素的交互作用中,是否讓黑腹心臟毒素會比白腹心臟毒素在細胞膜滯留中扮演更重要的角色。
    我們的研究結果表明,在表面電漿共振的實驗中顯示在檸檬酸緩衝液的情況下,黑腹心臟毒素在肝素的滯留會比白腹心臟毒素強大約六倍,結果說明Lys-23和Lys-31對於肝素的滯留確實有影響,另外,我們從高效液相層析儀分析滯留於肝素的黑、白腹心臟毒素,發現所有心臟毒素中,A3有最明顯的滯留現象,進一步從十二烷基硫酸鈉聚丙烯醯胺凝膠電泳觀察,發現加入交聯劑反應之後,心臟毒素A3-A6有檸檬酸異二聚體的現象,此現象比心臟毒素A2-A3和A3-A4更加明顯;在細胞實驗中顯示,白腹心臟毒素對於黑腹心臟毒素有更強的細胞毒性,而加入檸檬酸組又比沒有加檸檬酸組有更高的細胞致死率,另一方面,隨著檸檬酸濃度的增加細胞死亡率也跟著提高;結論,檸檬酸會明顯誘導黑腹心臟毒素二聚體的形成,且檸檬酸和心臟毒素作用後造成細胞死亡的更多,顯示細胞死亡可能和二聚體結構有關係,也可以發現黑、白腹心臟毒素細胞致死機制完全不同。


    Taiwan Cobra (Naja atra) is distributed based on eastern and western regions. Eastern cobra (bCTXs) is larger in size and fully black on its belly, whereas western cobra (wCTXs) is smaller and belly is white or gray. In the previous study from our lab, we found that east and west cobra cardiotoxin also have regional difference. West cobra venom contains more of cardiotoxin (CTX) A2 and A4, but lacks A6.
    Anionic citrate is one of a major component of cobra venom and around 50 mM citrate is present in Taiwan cobra venom. In cobra venom, effect of citrate on toxicity is poorly understood than inhibitory effect on cation-dependence action from venom toxins. In previous study, a citrate ion bound to Lys-23 and Lys-31 near tip of loop II stabilizes CTX-A3 homodimer and hydrophobic contact of functionally important loop I and II regions. Sequence alignment revels that both Lys-23 and Lys-31 are conserved residues in A3 and A6 (bCTXs) but not for A2 and A4 (wCTXs). The interaction of glycosaminoglycan and CTX in citrate might play an important role in cell membrane retention for bCTXs than wCTXs.
    Our results shows that bCTXs is about six times stronger than wCTXs in retention of heparin surface when added citrate in surface plasmon resonance(SPR), indicating that Lys-23 and Lys-31 have an impact for retention. From SDS-PAGE, we observed that adding cross-linking reagent and citrate induced heterodimer in CTX A3-A6 which was more evident than CTX A2-A3 and CTX A4-A3 heterodimer.
    Further retention of heparin surface in bCTXs and wCTXs are analyzed from reverse phase high performance liquid chromatography and we found that A3 had most significant retention in all CTXs. In cell viability assay, wCTXs is more cytotoxicity than bCTXs and citrate group have higher cell death than non-citrate group. On the other hand, increase in citrate concentration leads to improve in cell death. These results suggest that citrate is involved significantly to induce the formation of dimerization in bCTXs which can lead to more cell death. The dimerization in cardiotoxins might suggest relationships with cell death. We also found wCTXs and bCTXs cell death mechanism is completely different.

    目錄 第一章 緒論 1-1 台灣眼鏡蛇…………………………………………………………….......1 1-2 眼鏡蛇毒簡介……………………………………………………………...1 1-3 黑、白腹台灣眼鏡蛇毒之差異……………………………………….…..2 1-4 心臟毒素…………………………………………………………………...3 1-5 肝素………………………………………………………………………...4 1-6 表面電漿共振……………………………………………….……………..4 1-7 蛇毒中檸檬酸角色與能量代謝途徑……………………………….……..5 1-8 心臟毒素A3二聚體結構與肝素、檸檬酸形成複合物…………………7 1-9 研究目的…………………………………………………………….……..7 第二章 材料與方法 2-1 材料準備………………………………………………………….………12 2-2 實驗過程……………………………………………………………….…12 2-2-1 純化白腹眼鏡蛇之心臟毒素………………………………….………12 2-2-2 純化黑腹眼鏡蛇之心臟毒素…………………………………...…..…12 2-2-3 逆相高效液相層析 ……………………………………………..…….13 2-2-4 心臟毒素濃度定量……………………………………………...……..14 2-2-5 表面電漿共振 肝素晶片…………………………………………...…14 2-2-6 交聯試劑…………………………………………………………….....15 2-2-7 細胞存活率檢測…………………………………………………..…...16 第三章 結果 3-1 純化白腹眼鏡蛇之心臟毒素 ……………………………………….…..17 3-2 純化黑腹眼鏡蛇之心臟毒素 …………………………………...………17 3-3 表面電漿共振 肝素晶片……………………………………………...…17 3-4 黑、白腹心臟毒素-肝素複合體在檸檬酸緩衝液下的影響…………....18 3-5 肝素管柱分析有較強親和性之心臟毒素……….. ………..……...…….19 3-6 交聯試劑觀察心臟毒素之二聚體和三聚體結構之形成.………………19 3-7 有無檸檬酸條件下,黑、白腹心臟毒素細胞毒性…………………….…20 第四章 討論 4-1 黑、白腹心臟毒素毒性差異…………………………………….………..31 4-2 蛇毒中檸檬酸的角色與檸檬酸對於細胞致死之影響………….………31 4-3 黑、白腹眼鏡蛇地域上差異…………………………..……………….…32 4-4 黑、白腹眼鏡蛇神經毒素差異…………………………………...………33 4-5 心臟毒素和肝素之強弱親和性分析………………………….…………33 4-6 影響肝素表面滯留原因………………………….………………………33 4-7 不同緩衝液之影響於黑、白腹心臟毒素……………………………...…34 4-8 抑制劑抑制檸檬酸進入細胞質之細胞膜轉運蛋白..………………...…34 第五章 結論……………………………………………………………………..…38 第六章 參考文獻……………………………………………………………..……39

    Anderson, L. A. & M. J. Dufton (1997). The action of Taiwan cobra venom on methionine enkephalin: A useful assay for oligopeptidase content. Toxicon 35(7): 1113-1123.
    Barlow, A., et al. (2009). Coevolution of diet and prey-specific venom activity supports the role of selection in snake venom evolution. Proceedings of the Royal Society of London B: Biological Sciences 276(1666): 2443-2449.
    Belting, M. (2003). Heparan sulfate proteoglycan as a plasma membrane carrier. Trends in biochemical sciences 28(3): 145-151.
    Bhutia, Y. D., et al. (2017). "Plasma membrane Na+-coupled citrate transporter (SLC13A5) and neonatal epileptic encephalopathy." Molecules 22(3): 378.
    Brachs, S., et al. (2016). "Inhibition of citrate cotransporter Slc13a5/mINDY by RNAi improves hepatic insulin sensitivity and prevents diet-induced non-alcoholic fatty liver disease in mice." Molecular metabolism 5(11): 1072-1082.
    Cadigan, K. M. (2002). Regulating morphogen gradients in the Drosophila wing. Seminars in cell & developmental biology, Elsevier.
    Chang, C., & Lee, C. (1966). Electrophysiological study of neuromuscular blocking action of cobra neurotoxin. British journal of pharmacology and chemotherapy, 28(2), 172-181.
    Chang, L.-s., et al. (2000). The multiplicity of cardiotoxins from Naja naja atra (Taiwan cobra) venom. Toxicon 38(8): 1065-1076.
    Chen, T.-S., et al. (2005). Structural difference between group I and group II cobra cardiotoxins: X-ray, NMR, and CD analysis of the effect of cis-proline conformation on three-fingered toxins. Biochemistry 44(20): 7414-7426.
    Chien, K.-Y., et al. (1994). "Two distinct types of cardiotoxin as revealed by the
    structure and activity relationship of their interaction with zwitterionic
    phospholipid dispersions." Journal of Biological Chemistry 269(20):
    14473-14483.
    Doley, R. & R. Kini (2009). Protein complexes in snake venom. Cellular and
    molecular life sciences 66(17): 2851-2871.
    Dubovskii, P. V., et al. (2003). Interaction of the P‐type cardiotoxin with phospholipid membranes. European Journal of Biochemistry 270(9): 2038-2046.
    Efremov, R. G., et al. (2002). Interaction of cardiotoxins with membranes: a molecular modeling study. Biophysical journal 83(1): 144-153.
    Esko, J. D. & S. B. Selleck (2002). Order Out of Chaos: Assembly of ligand binding
    sites in heparan sulfate 1. Annual review of biochemistry 71(1): 435-471.
    Ferran, D. S., et al. (1992). Design and synthesis of a helix heparin-binding peptide. Biochemistry 31(21): 5010-5016.
    Fletcher, J. E. & M.-S. Jiang (1993). Possible mechanisms of action of cobra snake venom cardiotoxins and bee venom melittin. Toxicon 31(6): 669-695.
    Forouhar, F., et al. (2003). Structural basis of membrane-induced cardiotoxin A3 oligomerization. Journal of Biological Chemistry 278(24): 21980-21988.
    Francis, B., et al. (1992). Citrate is an endogenous inhibitor of snake venom enzymes by metal-ion chelation. Toxicon 30(10): 1239-1246.
    Fry, B. G., et al. (2008). Evolution of an arsenal structural and functional diversification of the venom system in the advanced snakes (Caenophidia). Molecular & Cellular Proteomics 7(2): 215-246.
    Furukawa, S. & K. Hayashi (1976). Isolation and characterization of nerve growth factor from the venom of Naja naja atra. The Journal of Biochemistry 80(5): 1001-1009.
    Gustafsson, M., et al. (2004). Retention of atherogenic lipoproteins in atherogenesis. Cellular and Molecular Life Sciences CMLS 61(1): 4-9.
    Gutiérrez, J. M., et al. (2009). Snake venomics and antivenomics: proteomic tools in the design and control of antivenoms for the treatment of snakebite envenoming. Journal of proteomics 72(2): 165-182.
    Hahnefeld, C. D., et al. (2004). Determination of kinetic data using surface plasmon resonance biosensors. Molecular diagnosis of infectious diseases, 299-320.
    Huang, H.-W., et al. (2015). Cobra venom proteome and glycome determined from individual snakes of Naja atra reveal medically important dynamic range and systematic geographic variation. Journal of proteomics 128: 92-104.
    Huard, K., et al. (2016). "Optimization of a dicarboxylic series for in vivo inhibition of citrate transport by the solute carrier 13 (SLC13) family." Journal of medicinal chemistry 59(3): 1165-1175.
    Hung, C.-C., et al. (1993). Sequence characterization of cardiotoxins from Taiwan cobra: isolation of a new isoform. Biochemistry and molecular biology international 31(6): 1031-1040.
    Hung, D.-Z., et al. (2003). The clinical significance of venom detection in patients of cobra snakebite. Toxicon 41(4): 409-415.
    Jayaraman, G., et al. (2000). Elucidation of the solution structure of cardiotoxin analogue V from the Taiwan cobra (Naja naja atra)—identification of structural features important for the lethal action of snake venom cardiotoxins. Protein Science 9(4): 637-646.
    Juliano, R. L. & S. Haskill (1993). Signal transduction from the extracellular matrix. Journal of Cell Biology 120: 577-577.
    Klotz, J., et al. (2016). "Mutations in the Na+/citrate cotransporter NaCT (SLC13A5) in pediatric patients with epilepsy and developmental delay." Molecular Medicine 22: 310.
    Kruspig, B., et al. (2012). "Citrate kills tumor cells through activation of apical caspases." Cellular and molecular life sciences: 1-9.
    Lee, C.-Y., et al. (1968). Pharmacological properties of cardiotoxin isolated from
    Formosan cobra venom. Naunyn-Schmiedebergs Archiv für Pharmakologie und
    experimentelle Pathologie 259(4): 360-374.
    Lee, S.-C., et al. (2005). Structural basis of citrate-dependent and heparan
    sulfate-mediated cell surface retention of cobra cardiotoxin A3. Journal of
    Biological Chemistry 280(10): 9567-9577.
    Lin, X. (2004). Functions of heparan sulfate proteoglycans in cell signaling during
    development. Development 131(24): 6009-6021.
    Liu, J. & S. C. Thorp (2002). Cell surface heparan sulfate and its roles in assisting
    viral infections. Medicinal research reviews 22(1): 1-25.
    Lo, T. B., et al. (1966). Chemical Studies of Formosan Cobra (Naja naja atra) Venom. Part I. Chromatographic Separation of Crude Venom on CM‐Sepadex and Preliminary Characterization of its Components. Journal of the Chinese Chemical Society 13(1): 25-37
    Lu, Y., et al. (2011). "Citrate induces apoptotic cell death: a promising way to treat gastric carcinoma?" Anticancer research 31(3): 797-805.
    Ming-Yi, L., & Ruey-Jen, H. (1997). Toxoids and antivenoms of venomous snakes in Taiwan. Journal of Toxicology: Toxin Reviews, 16(3), 163-175.
    Möllmann, U., et al. (1997). "Activity of cytotoxin P4 from the venom of the cobra snake Naja nigricollis on gram-positive bacteria and eukaryotic cell lines." Arzneimittel-Forschung 47(5): 671-673.
    Mycielska, M. E., et al. (2009). "Citrate transport and metabolism in mammalian cells." Bioessays 31(1): 10-20.
    Patel, H. V., et al. (1997). Heparin and Heparan Sulfate Bind to Snake Cardiotoxin SULFATED OLIGOSACCHARIDES AS A POTENTIAL TARGET FOR CARDIOTOXIN ACTION. Journal of Biological Chemistry 272(3): 1484-1492.
    Pajor, A. M. & K. M. Randolph (2007). "Inhibition of the Na+/dicarboxylate cotransporter by anthranilic acid derivatives." Molecular pharmacology 72(5): 1330-1336.
    Pajor, A. M., et al. (2016). "Molecular Basis for Inhibition of the Na+/Citrate Transporter NaCT (SLC13A5) by Dicarboxylate Inhibitors." Molecular pharmacology 90(6): 755-765.
    Piran, U. & W. J. Riordan (1990). Dissociation rate constant of the biotin-streptavidin complex. Journal of immunological methods 133(1): 141-143.
    Proudfoot, A. E., et al. (2003). Glycosaminoglycan binding and oligomerization are
    essential for the in vivo activity of certain chemokines. Proceedings of the National Academy of Sciences 100(4): 1885-1890.
    Sarkar, N. K. (1947) Isolation of cardiotoxin from Cobra venom (Naja tripudians,
    monocelate variety). J. Indian. Chem. Soc. 24, 316-336.
    Spillmann, D. & U. Lindahl (1994). Glycosaminoglycan-protein interactions: a
    question of specificity. Current Opinion in Structural Biology 4(5): 677-682.
    Sue, S.-C., et al. (2002). Heparin binding stabilizes the membrane-bound form of
    cobra cardiotoxin. Journal of Biological Chemistry 277(4): 2666-2673.
    Takahashi, H. & K. Hayashi (1982). Purification and characterization of anticomplement factor (cobra venom factor) from the Naja naja atra venom. Biochimica et Biophysica Acta (BBA)-Protein Structure and Molecular Enzymology 701(1): 102-110.
    Teng, C.-M., et al. (1984). Cardiotoxin from Naja naja atra snake venom: a potentiator of platelet aggregation. Toxicon, 22(3), 463-470.
    Turnbull, J., et al. (2001). Heparan sulfate: decoding a dynamic multifunctional cell regulator. Trends in cell biology 11(2): 75-82.
    Tseng, L., et al. (1968). Absorption and distribution of 131I-labeled cobra venom and
    its purified toxins. Toxicology and Applied Pharmacology 12(3): 526-535.
    Vyas, A. A., et al. (1997). Analysis of binding of cobra cardiotoxins to heparin
    reveals a new β-sheet heparin-binding structural motif. Journal of Biological
    Chemistry 272(15): 9661-9670.
    Wu, W.-G. (1997). Diversity of cobra cardiotoxin. Journal of Toxicology: Toxin
    Reviews 16(3): 115-134.
    Wu, W.-G. (1998). Cobra Cardiotoxin and Phospholipase A2 as GAG-binding Toxins: On the Path from Structure to Cardiotoxicity and Inflammation. Trends in
    cardiovascular medicine 8(6): 270-278.
    Wu, W.-G., et al. (2010). Role of heparan sulfates and glycosphingolipids in the pore
    formation of basic polypeptides of cobra cardiotoxin. Proteins Membrane Binding and Pore Formation, Springer: 143-149.
    Yoshida, B. M., et al. (1967). Isolation and properties of a cobravenom factor selectively cytotoxic to yoshida sarcoma cells. Biochimica et Biophysica Acta (BBA)-General Subjects, 136(3), 508-520.
    陳淑惠, et al. (1984). 台灣東部及西部地區飯匙倩蛇毒毒力
    之比較. 中華醫誌, 34, 644-649.
    楊彩雲 (2001) 眼鏡蛇心臟毒素導致心肌細胞凋亡的研究 國立清華大學/生命科
    學系/碩士
    吳欽翔 (2003). Comparison and Identification of venomous components between
    Eastern and Western Taiwan Cobra (Naja atra) by Two Dimensional High
    Performance Liquid Chromatography (2D-HPLC) and Electrospray Ionization
    Mass Spectrometry (ESI-MS) 國立清華大學/生命科學系/碩士
    林英博 (2004) 東、西部台灣眼鏡蛇蛇毒蛋白之細胞毒性與肌肉毒性分析 國立
    清華大學/生命科學系/碩士
    李紹禎 (2004) 蛇毒心臟毒蛋白與肝素作用之結合專注性與結合模式及其生物
    意義 國立清華大學/生命科學系/博士
    黃于禎 (2009) 蛇毒心臟毒素對心肌細胞溶酶體的作用研究 國立清華大學/生物
    資訊與結構生物研究所/碩士
    張捷 (2016) 台灣眼鏡蛇毒5端核苷酸水解酶(V5NTD)cDNA定序與結晶結構
    分析 國立清華大學/生物資訊與結構生物研究所/碩士

    QR CODE