簡易檢索 / 詳目顯示

研究生: 黃昱翔
Huang, Yu-Hsiang
論文名稱: 以雷射超快速合成石墨烯之製程開發研究
Ultra-Fast Synthesis of Graphene via Laser Irradiation Process
指導教授: 闕郁倫
口試委員: 闕郁倫
邱博文
王祥辰
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 124
中文關鍵詞: 石墨烯雷射
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯因其具有獨特的原子結構和出色的性質,被喻為未來高效元件的重要材料。近年來已不斷吸引全世界的頂尖研究團隊加入。直至目前為止,已經有許多石墨烯合成方法被發表。然而,在未來實際工業應用方面,至今還沒有真正符合低成本且有效率的合成方式。因此之故,此研究成功地利用雷射快速且低耗能動態成長石墨烯於一般玻璃基板。雷射成長之直寫圖案且快速合成的特性,可以與現今的半導體光電產業相結合。
    我們利用連續波長為808奈米的近紅外光雷射聚焦於目標基板上,直接寫入花樣圖案。石英基板上沉積以鎳薄膜做為金屬催化劑,而後旋轉塗布PMMA高分子或直接沉積非晶碳膜做為合成的碳源。經由雷射照射加熱後的區域會在鎳金屬薄膜的上下表面析出石墨烯薄膜。輔以各種材料分析,如拉曼光譜分析、穿透式電子顯微鏡分析等對雷射合成出的石墨烯膜薄做有系統的研究,並提出鎳催化雷射合成石墨烯的可能成長機制。
    我們相信此種先進新穎的雷射快速合成石墨烯方式對於未來產業的應用發展方面,極具貢獻。


    Graphene, owing to its unique structural and outstanding properties, is regarded as one of the most important materials for future high performance devices and has been attracted lots of research groups all over the world. Until now, there are many ways to synthesize graphene for research purposes. However, there are no convinced and cost-efficient way for real industrial applications. In this regard, we successfully demonstrate a rapid fabrication of graphene on glass substrate by laser. The properties of low power consumption and fast growth that is highly compatible with real semiconductor manufacturing process. It can be also considered as a fast and dynamic growth process.
    The 808 nm near-infrared laser continuous wave laser is used to focus on glass substrate with a patterned nickel thin film (Ni TF) as metal catalyst. PMMA (or amorphous carbon) is deposited on top of the Ni TF as solid carbon source. As a result, few-layer graphene can be synthesized on both sides of Ni TF after the laser irradiation successfully. Microstructures were characterized by Raman spectroscopy and transmission electron microscopy (TEM). In addition, we propose a possible mechanism for this laser synthesis process on Ni.
    We believe this novel, fast and convenient way for graphene synthesis can have a significant contribution to future applications.

    Content 致謝 I 摘要 III Abstract IV Content V Figure Caption IX Table Caption XV Chapter 1 Introduction 1 1.1. Motivation 1 1.1.1. Semiconductor Industry Today 1 1.1.2. Role of Graphene 3 1.1.3. Graphene for Application 4 1.1.4. Laser Fabrication Process 5 1.2. Experimental Propose 5 Chapter 2 Graphene Properties 7 2.1. Allotropes of Carbon 8 2.2. Crystallinity of Graphene 9 2.3. Electrical Properties of Graphene 13 2.4. Phonon Energy Band in Graphene 17 2.5. Optical Properties 19 2.6. Thermal Properties 20 2.7. Mechanical Properties 21 Chapter 3 Synthesis and Characterization of Graphene 23 3.1. Synthesis of Graphene 23 3.1.1. Mechanical Exfoliation 23 3.1.2. Thermal Decomposition of SiC 25 3.1.3. Chemical Derived Graphene 26 3.1.4. Chemical Vapor Deposition (CVD) 27 3.1.4.1. Graphene Growth by Carbon Segregation 28 3.1.4.2. Graphene Growth by Surface controlled Carbon Decomposition 36 3.1.4.3. Graphene Growth by Solid Carbon Source 40 3.1.5. Laser Process 41 3.2. Characterization of Graphene 43 3.2.1. Optical Identification 44 3.2.2. Scanning Probe Microscopy (SPM) 44 3.2.3. Transmission Electron Microscopy (TEM) 46 3.2.4. Raman Spectroscopy 47 3.2.4.1. Raman Scattering 47 3.2.4.2. Raman Spectrum of Graphene 50 Chapter 4 Laser Heating Process for Graphene Synthesis 56 4.1. Basic Concepts of Laser 56 4.1.1. “LASER” 56 4.1.2. Basic Operating Principle 57 4.1.3. Classification of Laser 58 4.1.3.1. Operative Modes 58 4.1.3.2. Media Species 58 4.2. Surface Engineering by Laser 59 4.2.1. Light Propagation in Materials 60 4.2.2. Energy Absorption – Optical Absorption Depth 62 4.2.3. Heat Transport – Thermal Diffusion Length 64 4.2.4. Material Response 65 4.3. Laser System Set Up 66 4.4. Beginning of Experiment 70 4.4.1. Preliminary Ideas 70 4.4.2. Selection of Solid Carbon Source 72 4.4.3. Sample Preparation 73 4.4.4. Experimental Process 73 4.4.5. Primary Experiment 75 a. Laser intensity 76 c. Cooling rate 77 d. Nickel thickness 78 Chapter 5 Top-segregated Graphene 79 5.1. PMMA 79 5.1.1. Laser Illumination Time 81 5.1.2. Laser Intensity 83 5.2. Amorphous Carbon 85 5.2.1. Illumination Time 86 5.2.2. Laser intensity 88 5.2.3. SEM Analysis 90 5.2.4. TEM Observation 92 Chapter 6 Back-segregated Graphene 93 6.1. Capping SiO2 93 6.2. Effective Factor 96 6.2.1. Nickel Thickness 96 6.2.2. Amounts of α-C 97 6.2.3. Laser Intensity 98 6.2.4. Illumination Time 100 6.3. Raman mapping and TEM observation 101 Chapter 7 Mechanism 103 7.1. Growth of Graphene by Segregation of Carbon 103 7.2. Laser Induced Carbon Diffusion 105 7.2.1. Concentration Gradient of Carbon 106 7.2.2. Thermal Gradient 108 7.3. Carbon Channel 110 7.4. Possible Mechanism 112 Chapter 8 Conclusion and Future Work 114 References 117

    1. Bardeen, J. and W.H. Brattain, The Transistor, A Semi-Conductor Triode. Physical Review, 1948. 74(2): p. 230-231.
    2. Kahng, D. and M. Atalla, U.S. patents, 3206670 & 3102230. 1960.
    3. Moore, G.E., Cramming more components onto integrated circuits. Electronics Magazine, 1965.
    4. http://www.intel.com/content/www/us/en/silicon-innovations/moores-law-technology.html.
    5. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
    6. Eda, G., G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nano, 2008. 3(5): p. 270-274.
    7. Morozov, S.V., et al., Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Physical Review Letters, 2008. 100(1): p. 016602.
    8. Mayorov, A.S., et al., Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature. Nano Letters, 2011. 11(6): p. 2396-2399.
    9. Balandin, A.A., et al., Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 2008. 8(3): p. 902-907.
    10. Ghosh, S., et al., Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Applied Physics Letters, 2008. 92(15).
    11. Calizo, I., et al., Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers. Nano Letters, 2007. 7(9): p. 2645-2649.
    12. Balandin, A.A., Thermal properties of graphene and nanostructured carbon materials. Nat Mater, 2011. 10(8): p. 569-581.
    13. Walker, L.S., et al., Toughening in Graphene Ceramic Composites. ACS Nano, 2011. 5(4): p. 3182-3190.
    14. Frank, I.W., et al. Mechanical properties of suspended graphene sheets. 2007. AVS.
    15. Lee, C., et al., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 2008. 321(5887): p. 385-388.
    16. Liu, F., P. Ming, and J. Li, Ab initio calculation of ideal strength and phonon instability of graphene under tension. Physical Review B, 2007. 76(6): p. 064120.
    17. Gusynin, V.P., S.G. Sharapov, and J.P. Carbotte, Unusual Microwave Response of Dirac Quasiparticles in Graphene. Physical Review Letters, 2006. 96(25): p. 256802.
    18. Nair, R.R., et al., Fine Structure Constant Defines Visual Transparency of Graphene. Science, 2008. 320(5881): p. 1308.
    19. Moser, J., A. Barreiro, and A. Bachtold, Current-induced cleaning of graphene. Applied Physics Letters, 2007. 91(16): p. 163513-3.
    20. Zhang, Y., et al., Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 2005. 438(7065): p. 201-204.
    21. Lin, Y.-M., et al., Operation of Graphene Transistors at Gigahertz Frequencies. Nano Letters, 2008. 9(1): p. 422-426.
    22. Fasolino, A., J.H. Los, and M.I. Katsnelson, Intrinsic ripples in graphene. Nat Mater, 2007. 6(11): p. 858-861.
    23. Kroto, H.W., et al., C60: Buckminsterfullerene. Nature, 1985. 318(6042): p. 162-163.
    24. Kratschmer, W., et al., Solid C60: a new form of carbon. Nature, 1990. 347(6291): p. 354-358.
    25. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354(6348): p. 56-58.
    26. Iijima, S. and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993. 363(6430): p. 603-605.
    27. Geim, A.K. and K.S. Novoselov, The rise of graphene. Nat Mater, 2007. 6(3): p. 183-191.
    28. Chung, D.D.L., Review Graphite. Journal of Materials Science, 2002. 37(8): p. 1475-1489.
    29. Latil, S. and L. Henrard, Charge Carriers in Few-Layer Graphene Films. Physical Review Letters, 2006. 97(3): p. 036803.
    30. Mendes-de-Sa, T.G., et al., Correlation between (in)commensurate domains of multilayer epitaxial graphene grown on SiC and single layer electronic behavior. Nanotechnology, 2012. 23(47): p. 475602.
    31. Wallace, P.R., The Band Theory of Graphite. Physical Review, 1947. 71(9): p. 622-634.
    32. Winter, C., Time-resolved electron spectroscopy in Graphene with High Harmoni radiation, http://www.uni-muenster.de/Physik.PI/Zacharias/research/graphene/graphene.html.
    33. Partoens, B. and F.M. Peeters, From graphene to graphite: Electronic structure around the K point. Physical Review B, 2006. 74(7): p. 075404.
    34. Novoselov, K.S., et al., Two-dimensional gas of massless Dirac fermions in graphene. Nature, 2005. 438(7065): p. 197-200.
    35. Maultzsch, J., et al., Phonon Dispersion in Graphite. Physical Review Letters, 2004. 92(7): p. 075501.
    36. Kuzmenko, A.B., et al., Universal Optical Conductance of Graphite. Physical Review Letters, 2008. 100(11): p. 117401.
    37. Blake, P., et al., Making graphene visible. Applied Physics Letters, 2007. 91(6).
    38. Berger, C., et al., Electronic confinement and coherence in patterned epitaxial graphene. Science, 2006. 312(5777): p. 1191-1196.
    39. de Heer, W.A., et al., Epitaxial graphene. Solid State Communications, 2007. 143(1-2): p. 92-100.
    40. Hass, J., W.A. de Heer, and E.H. Conrad, The growth and morphology of epitaxial multilayer graphene. Journal of Physics-Condensed Matter, 2008. 20(32).
    41. Sprinkle, M., et al., Scalable templated growth of graphene nanoribbons on SiC. Nature Nanotechnology, 2010. 5(10): p. 727-731.
    42. Dresselhaus, M.S. and G. Dresselhaus, INTERCALATION COMPOUNDS OF GRAPHITE. Advances in Physics, 1981. 30(2): p. 139-326.
    43. Hummers, W.S. and R.E. Offeman, Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1958. 80(6): p. 1339-1339.
    44. Stankovich, S., et al., Graphene-based composite materials. Nature, 2006. 442(7100): p. 282-286.
    45. Li, X., et al., Highly conducting graphene sheets and Langmuir-Blodgett films. Nat Nano, 2008. 3(9): p. 538-542.
    46. Obraztsov, A.N., et al., Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon, 2007. 45(10): p. 2017-2021.
    47. Reina, A., et al., Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Letters, 2008. 9(1): p. 30-35.
    48. Bhaviripudi, S., et al., Role of Kinetic Factors in Chemical Vapor Deposition Synthesis of Uniform Large Area Graphene Using Copper Catalyst. Nano Letters, 2010. 10(10): p. 4128-4133.
    49. Chae, S.J., et al., Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation. Advanced Materials, 2009. 21(22): p. 2328-2333.
    50. Lee, S., K. Lee, and Z. Zhong, Wafer Scale Homogeneous Bilayer Graphene Films by Chemical Vapor Deposition. Nano Letters, 2010. 10(11): p. 4702-4707.
    51. Li, X., et al., Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science, 2009. 324(5932): p. 1312-1314.
    52. Sutter, P.W., J.I. Flege, and E.A. Sutter, Epitaxial graphene on ruthenium. Nature Materials, 2008. 7(5): p. 406-411.
    53. Ago, H., et al., Epitaxial Chemical Vapor Deposition Growth of Single-Layer Graphene over Cobalt Film Crystallized on Sapphire. ACS Nano, 2010. 4(12): p. 7407-7414.
    54. Xue, Y., et al., Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Research, 2011. 4(12): p. 1208-1214.
    55. Losurdo, M., et al., Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure. Physical Chemistry Chemical Physics, 2011. 13(46): p. 20836-20843.
    56. Hagstrom, S., H.B. Lyon, and G.A. Somorjai, Surface Structures on the Clean Platinum (100) Surface. Physical Review Letters, 1965. 15(11): p. 491-493.
    57. Grant, J.T. and T.W. Haas, A study of Ru(0001) and Rh(111) surfaces using LEED and Auger electron spectroscopy. Surface Science, 1970. 21(1): p. 76-85.
    58. Austerman, S.B., S.M. Myron, and J.W. Wagner, Growth and characterization of graphite single crystals. Carbon, 1967. 5(6): p. 549-557.
    59. Fujita, D. and K. Yoshihara. Surface precipitation process of epitaxially grown graphite (0001) layers on carbon-doped nickel(111) surface. 1994. Orlando, Florida (USA): AVS.
    60. Yu, Q., et al., Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters, 2008. 93(11): p. 113103-3.
    61. Reina, A., et al., Growth of large-area single- and Bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Research, 2009. 2(6): p. 509-516.
    62. Kim, K.S., et al., Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009. 457(7230): p. 706-710.
    63. Peng, Z., et al., Direct Growth of Bilayer Graphene on SiO2 Substrates by Carbon Diffusion through Nickel. ACS Nano, 2011. 5(10): p. 8241-8247.
    64. Lee, S., et al., Heteroepitaxy of carbon on copper by high‐temperature ion implantation. Applied Physics Letters, 1991. 59(7): p. 785-787.
    65. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano, 2010. 5(8): p. 574-578.
    66. Yu, Q., et al., Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition. Nat Mater, 2011. 10(6): p. 443-449.
    67. Ismach, A., et al., Direct Chemical Vapor Deposition of Graphene on Dielectric Surfaces. Nano Letters, 2010. 10(5): p. 1542-1548.
    68. Su, C.-Y., et al., Direct Formation of Wafer Scale Graphene Thin Layers on Insulating Substrates by Chemical Vapor Deposition. Nano Letters, 2011. 11(9): p. 3612-3616.
    69. Sun, Z., et al., Growth of graphene from solid carbon sources. Nature, 2010. 468(7323): p. 549-552.
    70. Lenner, M., et al., Ultrafast laser ablation of graphite. Physical Review B, 2009. 79(18): p. 184105.
    71. Qian, M., et al., Formation of graphene sheets through laser exfoliation of highly ordered pyrolytic graphite. Applied Physics Letters, 2011. 98(17): p. 173108-3.
    72. Mortazavi, S.Z., P. Parvin, and A. Reyhani, Fabrication of graphene based on Q-switched Nd:YAG laser ablation of graphite target in liquid nitrogen. Laser Physics Letters, 2012. 9(7): p. 547.
    73. Lee, S., et al., Laser-Synthesized Epitaxial Graphene. ACS Nano, 2010. 4(12): p. 7524-7530.
    74. Koh, A.T.T., Y.M. Foong, and D.H.C. Chua, Cooling rate and energy dependence of pulsed laser fabricated graphene on nickel at reduced temperature. Applied Physics Letters, 2010. 97(11): p. 114102-3.
    75. Subrahmanyam, K.S., et al., Blue light emitting graphene-based materials and their use in generating white light. Solid State Communications, 2010. 150(37–38): p. 1774-1777.
    76. Novoselov, K.S., et al., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(30): p. 10451-10453.
    77. Stolyarova, E., et al., High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface. Proceedings of the National Academy of Sciences, 2007. 104(22): p. 9209-9212.
    78. Suenaga, K. and M. Koshino, Atom-by-atom spectroscopy at graphene edge. Nature, 2010. 468(7327): p. 1088-1090.
    79. Ferrari, A.C., et al., Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters, 2006. 97(18): p. 187401.
    80. Dresselhaus, M.S., et al., Raman spectroscopy of carbon nanotubes. Physics Reports, 2005. 409(2): p. 47-99.
    81. Saito, R., et al., Probing Phonon Dispersion Relations of Graphite by Double Resonance Raman Scattering. Physical Review Letters, 2001. 88(2): p. 027401.
    82. Gould, R.G., The LASER, Light Amplification by Stimulated Emission of Radiation. The Ann Arbor Conference on Optical Pumping, the University of Michigan, 15 June through 18 June 1959, 1959: p. 128.
    83. Danh, Commercial laser lines. http://en.wikipedia.org/wiki/File:Commercial_laser_lines.svg, 2009.
    84. Sugioka, K.j., M. Meunier, and A. Piqué, Laser precision microfabrication. Springer series in materials science. 2010, Berlin: Springer. xvi, 344 p.
    85. Hecht, E., Optics. 4th ed. 2002, Reading, Mass.: Addison-Wesley. vi, 698 p.
    86. Heller, J., et al., Temperature dependence of the reflectivity of silicon with surface oxide at wavelengths of 633 and 1047 nm. Applied Physics Letters, 1999. 75(1): p. 43-45.
    87. Arnold, C.B., et al., Parameter-free test of alloy dendrite-growth theory. Physical Review B, 1999. 59(1): p. 334-343.
    88. Weeber, J.C., et al., Near-field observation of surface plasmon polariton propagation on thin metal stripes. Physical Review B, 2001. 64(4): p. 045411.
    89. Lide, D.R., CRC handbook of chemistry and physics. 82nd ed. 2001.
    90. Bäuerle, D., Laser Processing and Chemistry. 2000: Springer.
    91. Chichkov, B.N., et al., Femtosecond, picosecond and nanosecond laser ablation of solids. Applied Physics A, 1996. 63(2): p. 109-115.
    92. Allmen, M.v., Laser-Beam Interactions with Materials: Physical Principles and Applications. 1995: Springer.
    93. Steen, W.M., Laser Material Processing, 3rd edn. 2003: Springer.
    94. Kock, o.D., L.M. Inc., and W. Somerset, Laser Heat Treating. Industrial Heating, 2001.
    95. Majumdar, J.D. and I. Manna, Laser material process. International Materials Reviews, 2011. 56: p. 5,6.
    96. Singleton, M. and P. Nash, The C-Ni (Carbon-Nickel) system. Bulletin of Alloy Phase Diagrams, 1989. 10(2): p. 121-126.
    97. Natesan, K. and T.F. Kassner, Thermodynamics of Carbon in Nickel, Iron-Nickel and Iron-Chromium-Nickel Alloys. Metallurgical Transactions, 1973. 4(11): p. 2557-2566.
    98. Thomas, K.J., et al., Raman spectra of polymethyl methacrylate optical fibres excited by a 532 nm diode pumped solid state laser. Journal of Optics A: Pure and Applied Optics, 2008. 10(5): p. 055303.
    99. Lander, J.J., H.E. Kern, and A.L. Beach, Solubility and Diffusion Coefficient of Carbon in Nickel - Reaction Rates of Nickel-Carbon Alloys with Barium Oxide. Journal of Applied Physics, 1952. 23(12): p. 1305-1309.
    100. Lander, J.J., H.E. Kern, and A.L. Beach, The Solubility and Diffusion Coefficient of Carbon in Nickel. Physical Review, 1952. 85(2): p. 389-389.
    101. Abbaschian, R., L. Abbaschian, and R.E. Reed-Hill, Physical metallurgy principles. 4th ed. 2009, Stamford, CT: Cengage Learning. xvii, 750 p.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE