研究生: |
許應捷 Hsu, Ying Chieh |
---|---|
論文名稱: |
暫態光柵用於可調分佈式回授 光參數震盪器之進展 Transient Grating toward Tunable Distributed Feedback (DFB) Optical Parametric Oscillation (OPO) |
指導教授: |
黃衍介
Huang, Yen Chieh |
口試委員: |
陳彥宏
施宙聰 黃衍介 Shy, Jow Tsong |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 英文 |
論文頁數: | 78 |
中文關鍵詞: | 光柵 、參數振盪器 、非線性光學 、暫態光柵 、導電玻璃 、分佈式 |
外文關鍵詞: | grating, parametric osillator, nonlinear optics, Transient grating, ITO, Distributed feedback |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文之研究係在探討分佈式回授(DFB)結構於光參數震盪器之進展。由於 355 nm紫外光對於摻鎂鈮酸鋰能產生光折變效應而改變其折射係數,故使用此 355 nm之干涉儀寫入材料中使之產生週期性的折射係數改變(光柵結構),再藉由532 nm泵浦光產生之OPG訊號去探測此週期性調製,並產生OPO之效果。
摻雜5%氧化鎂之鈮酸鋰,此材料相較於共熔(congruent)鈮酸鋰提供了更佳的光折變特性與更快的載子移動速度。此一材料,藉由Type-I的相位匹配之二階非線性光參數產生器於532 nm奈秒泵浦光,產生了寬廣之817.5 nm~1.52 μm之頻寬光源訊號。為了能達成可調式共振腔結構,即可調式週期性光柵結構,吾人研究發現透明導電薄膜 氧化銦錫,藉由三倍頻Nd:YAG之奈秒雷射照射後,可藉由雙光子吸收效應產生暫態光柵,而此光柵深度約為 135 nm,而根據本實驗結果,此光柵週期可從193.6 nm 調製到 766.7 nm,對應之共振波長為 890 nm~2.5 μm是一個非常廣泛並可實際應用的波段,此一發現成果,可用於未來DFBOPO於光波導之研究發展。最後,我們將現有實驗成果結合理論模擬,來去探討DFBOPO在摻鎂之鈮酸鋰之研究影響。
In the thesis, we have investigated on distributed feedback structure toward optical parametric oscillation. In order to fabricate a grating structure in the nonlinear gain medium such as MgO: LN, we used nano-second 355 nm UV pulse laser with interferometer technique to induce a periodical refractive index modulation (grating) structure, and this phenomenon is generated by photorefractive effect. Also, we demonstrated an optical parametric generation in MgO: LN which is used to detect the DFB structure.
In our knowledge, Mg-doped LiNbO3 is better than pure congruent LiNbO3 with low noise, fast photorefractive response time, higher photorefractive sensitivity and optical damage threshold. We demonstrated a type I phase matching optical parametric generation with pump 532 nm by changing the temperature of the crystal from 200.7 to 106.5℃. The results shows a wide tuning range of signal and idler from 817.5 to 1523 nm.
In order to design a tunable resonated cavity structure which means a tunable grating structure, we investigated on Indium Tin Oxide (ITO). In the experiment, when we pump a 355 nm UV with interferometer pattern, we discovered that there is a transient grating structure in the ITO by two-photon absorption. The maxima value of the refractive index change in ITO is ∆n=4.1×〖10〗^(-3). The tunable grating period in our interferometer setup is widely from 193.6 nm to 766.7 nm, which means the resonated wavelength is from 890nm to 2.5 μm. This particular transient grating result may give a chance on DFB OPO wave guide in future.
Furthermore, in theoretical simulation, we combined the coupled-wave theory with DFB theory to discuss the longitudinal mode selectivity and parametric threshold gain, also we modified the simulation with considering the absorption term completely. At last, we used the present experimental results and then combined it into the theory. To understand the physics and the opportunity for application.
[1] A. C. Chiang, Y. Y. Lin, T. D. Wang, and Y. C. Huang, Distributed-feedback optical parametric oscillation by use of a photorefractive grating in periodically poled lithium niobate, Optics Letters, Vol. 27, NO. 20, (2002).
[2] Judith Renate Marie-Luise Schwesyg, Interaction of light with impurities in lithium niobate crystals, Chapter 2, (2011).
[3] Jingjun Xu, Guangyin Zhang, Feifei Li, Xinzheng Zhang, Qian Sun, Simin Liu, Feng Song, Yongfa Kong, Xiaojun Chen, Haijun Qiao, Jianghong Yao, and Zhao Lijuan, Enhancement of ultraviolet photorefraction in highly magnesium-doped lithium niobate crystals, Optics Letters, Vol. 25, Issue 2, (2000).
[4] Mathieu Chauvet, Florent Bassignot, Fabien Henrot, Fabrice Devaux, Ludovic Gauthier-Manuel, Hervé Maillotte, Gwenn Ulliac, and Ballandras Sylvain, Fast-beam self-trapping in LiNbO3 films by pyroelectric effect, Optics Letters, Vol. 40, Issue 7, (2015).
[5] Bahaa E. A. Saleh, Malvin Carl Teich, Fundamentals of Photonics, Chapter 20, Second Edition, John Wiley & Sons, (2009).
[6] Che‐Tsung Chen, Dae M. Kim, and D. von der Linde, Efficient hologram recording in LiNbO3: Fe using optical pulses, Appl. Phys. Lett. Vol. 34, Issue 5, (1979).
[7] F. Jermann, and J. Otten, Light-induced charge transport in LiNbO3: Fe at high light intensities, J. Opt. Soc. Am. B, Vol. 10, Issue 11, (1993).
[8] Hung-Te Hsieh, Demetri Psaltis, Oliver Beyer, Dominik Maxein, Clemens von Korff Schmising, Karsten Buse, and Boris Sturman, Femtosecond holography in lithium niobate crystals, Optics Letters, Vol. 30, Issue 17, (2005).
[9] Wiener Koechner, Solid-State Laser Engineering, (1890).
[10] H.J. Eichler, P. Günter and D. W. Pohl, Laser-induced dynamic gratings, Chapter 2, Springer-Verlag, (1986).
[11] David E. Zelmon, David L. Small, and Dieter Jundt, Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5 mol. % magnesium oxide–doped lithium niobate, J. Opt. Soc. Am. B., Vol. 14, Issue 12, (1997).
[12] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, Generation of Optical Harmonics, Phys. Rev. Lett., Vol. 7, No 4, (1961).
[13] Frank L. Pedrotti, S.J., Leno M. Pedrotti and Leno S. Pedrotti, Introduction to Optics, Chapter24, Third Edition, Pearson Addison Wesley, (2007).
[14] H. Kim, C. M. Gilmore, A. Piqué, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi and D. B. Chrisey, Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices, J. Appl. Phys., Vol. 86, Issue 11, (1999).
[15] D. R. Dean and R. J. Collins, Transient phase gratings in ZnO induced by two‐photon absorption, J. Appl. Phys., Vol.44, Issue 12, (1973).
[16] H.J. Eichler, P. Günter and D. W. Pohl, Laser-induced dynamic gratings, Chapter 2, Springer-Verlag, (1986).
[17] Birgitte Thestrup, Carsten Dam-Hansen, Jørgen Schou and Per Michael Johansen, Holographic grating formation in laser-deposited aluminium-doped zinc oxide and indium tin oxide films, J. Opt. A: Pure Appl., Vol. 2, No. 3, (2000).
[18] C. Grivas, D.S. Gill, S. Mailis, L. Boutsikaris and N.A. Vainos, Indium oxide thin-film holographic recorders grown by excimer laser reactive sputtering, Appl. Phys. A., Vol. 66, Issue 2, (1998).
[19] S. Pissadakis, S. Mailis, L. Reekie, J.S. Wilkinson, R.W. Eason, N.A. Vainos, K. Moschovis and G. Kiriakidis, Permanent holographic recording in indium oxide thin films using 193 nm excimer laser radiation, Appl. Phys. A., Vol. 69, Issue 3, (1999).
[20] Ch. Grivas, S. Mailis, L Boutsikaris, D S Gill, N. A. Vainos and P. J. Chandler, Growth and performance of pulsed laser deposited indium oxide thin-film holographic recorders, Laser Physics, Vol.8, Issue 1, (1998).