簡易檢索 / 詳目顯示

研究生: 紀元發
Yuan-Fa Chi
論文名稱: 鋅空氣電池之空氣陰極研究-新電極結構與新碳材料
Air Cathode in Zinc-Air Battery-New Electrode Structure and Novel Carbon Support/Catalyst
指導教授: 金重勳
Tsung-Shune Chin
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 94
中文關鍵詞: 鋅空氣電池碳材金屬空氣空氣極
外文關鍵詞: zinc-air, battery, carbon, metal-air, air electrode
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在金屬-空氣電池中,空氣陰極的效能、製作成本以及耐用性為一重大課題。在本實驗中嘗試突破創新,有兩大不同之處:一、實驗所用電極網,利用良好催化性之發泡鎳,搭配良好支撐性之不繡鋼網,提升催化以及支撐兩要素。二、導入新碳材料,利用近年來受注目的產品-竹炭,將竹炭引進催化層材料,探討與過去文獻中,所利用的碳黑、石墨、活性碳等不同處。實驗量測以電位極化掃描法探究電化學性質,並輔以SEM對於電極表面進行觀察;XRD對於電極材料結構進行觀察,求得最佳化空氣極。
      結果顯示,新電極結構對於催化性上,與純發泡鎳電極,在電壓-0.4 VHg/HgO時電流相差不到10 %,但卻比純不繡鋼網電極好75 %;而電極結構強度上,與不繡鋼網相同,卻比純發泡鎳好甚多,促使大面積使用上,可有良好支撐及催化性。
      對於竹炭引入空氣極的使用,電性表現上,在電壓-0.4 VHg/HgO時電流可達161.4 mA,相較於過去習用碳材至少可提升25%以上的效能,可說是相當成功的一個創舉。
      對於催化劑MnO2或LiCoO2兩者,及其合成之尖晶石型氧化物之催化性,在多孔性碳材的催化上,無明顯成效,在催化劑使用方面還有待繼續努力研究。


    The performance, manufacture cost and durability of air cathodes are key issues in metal-air battery. Two major innovations were proposed in this research. The combination of Ni foam and stainless steel as current collectror is the first one. It results in both high electrochemical performance and good mechanical strength. The second one is the adoption of bamboo carbon into catalyst layer as a novel carbon support/ catalyst. In order to optimize the air cathode, linear sweep voltametry (LSV), scanning electron microscope (SEM) and X-ray diffraction (XRD) were conducted to examine the electrochemical performance, surface morphology and lattice structure, respectively. According to cathodic polarization results, under -0.4 VHg/HgO, the combination of Ni foam and stainless steel revealed 75 % higher and 10 % lower in current density compared to stainless steel and Ni foam alone, respectively. In addition, the new electrode structure performed much better mechanical strength than does Ni foam alone. The new electrode structure could provide both the high electrochemical performance and good mechanical strength demanded by large area/current applications.
    The usage of bamboo carbon into activation layer as novel carbon support/catalyst was supposed to be a good innovation. Under -0.4 VHg/HgO, the current density was about 161.4 mA/cm2, at least 25 % enhancement was achieved compared to the conventional others.
    On the other hand, the use of MnO2, LiCoO2 and spinel-type oxides as catalyst was considered to be of little help for cathodes composed of porous carbon. It requires to further studies.

    摘要 I Abstract II 目錄 III 圖目錄 VI 表目錄 VIII 第一章 序論 1 第二章 文獻回顧 3 2.1 電池簡介 3 2.1.1一次電池 4 2.1.2二次電池 6 2.1.3電池原理 7 2.2 金屬空氣電池 9 2.2.1金屬空氣電池發展史 9 2.2.2金屬空氣電池種類 12 2.3 鋅空氣電池 13 2.3.1鋅空氣電池簡介 13 2.3.2鋅空氣電池優缺點 13 2.4 鋅空氣電池之構成 15 2.4.1全反應 15 2.4.2鋅電極 16 2.4.2.1鋅電極之構成 16 2.4.2.2鋅電極之氧化還原 17 2.4.3空氣電極 18 2.4.3.1空氣極之構成 18 2.4.3.2空氣極之氧化還原 19 2.4.3.2.1氧還原機制 19 2.4.3.2.2氧氣生成機制 20 2.4.3.3碳材 21 2.4.3.4催化劑 22 2.4.3.5聚四氟乙烯(PTFE) 25 2.4.3.6集電網 25 2.4.4電解液 26 2.5 鋅空氣電池外在影響因素 28 2.5.1濕度影響 28 2.5.2溫度影響 29 2.6 各款式鋅空氣電池 30 2.6.1一次鋅空氣電池 30 2.6.1.1鋅板式鋅空氣電池 30 2.6.1.2鈕扣式鋅空氣電池 30 2.6.1.3電解液循環式鋅空氣電池 31 2.6.2二次鋅空氣電池 33 2.6.2.1循環式鋅空氣電池 33 2.6.2.2電解液固定式鋅空氣電池 34 2.6.2.3三極式電解液固定式之鋅空氣電池 35 第三章 實驗 36 3.1 試藥 36 3.2 實驗儀器 37 3.2.1 X光繞射分析儀(XRD分析) 37 3.2.2掃描式電子顯微鏡(SEM分析) 37 3.2.3熱重/熱差分析(TGA/DTA) 37 3.2.4電化學分析 38 3.3 實驗流程 39 3.3.1催化劑製作 39 3.3.1.1尖晶石型氧化物 39 3.3.1.2催化劑之前處理 40 3.3.2空氣極製備 41 3.3.2.1集電網 41 3.3.2.2催化層 42 3.3.2.3擴散層 42 3.3.2.4空氣極製作 42 3.4 鋅空氣電池實驗設備 47 3.4.1實驗設備 47 3.4.2實驗測試條件 48 3.5 空氣極研究 49 3.5.1碳材研究 49 3.5.2催化劑研究 49 3.5.3空氣極支撐結構研究 50 3.5.4催化層之碳粉比例研究 50 第四章 結果與討論 51 4.1 碳材特性分析 51 4.1.1基本特性 51 4.1.2碳材之XRD分析 51 4.1.3碳材之表面形貌 54 4.2 催化劑之特性分析 58 4.2.1合成催化劑尖晶石型氧化物 58 4.2.1.1 DTA 58 4.2.1.2 XRD 59 4.2.1.3 SEM 62 4.2.2碳粉與催化劑之再處理 62 4.2.2.1 XRD 64 4.2.2.2 SEM 67 4.3 空氣陰極之性能分析 68 4.3.1單一碳材製作成空氣極 68 4.3.1.1空氣陰極之極化曲線 69 4.3.1.2空氣陰極之SEM圖 72 4.3.2兩種碳材料混合製作成空氣極 75 4.3.2.1空氣陰極之極化曲線 76 4.3.2.2催化層之SEM圖 78 4.3.3添加不同催化劑之空氣極 80 4.3.3.1不同催化劑之空氣極 80 4.3.3.1.1極化曲線分析 81 4.3.3.2具前處理催化劑之空氣極 81 4.3.3.2.1極化曲線分析 83 4.3.4不同支撐結構之空氣極 85 4.3.4.1極化曲線分析 86 4.3.5活性碳與竹炭之比例 88 4.3.5.1極化曲線分析 88 第五章 結論 91 參考文獻 93

    1孫清華, “最新可充電電池技術大全”, 全華科技圖書股份有限公司, 2001
    2陳師元, “二次鋅空氣電池鋅陽極合金系統之研究”, 清華大學材料科學工程研究所論文, 2002
    3 David Linden, “Handbook of Batteries”, McGraw-Hill Publishing company, New York, 1994
    4 H.A. Kiehne, “Battery Technology Handbook”, Marcel Dekker, Inc., 2003
    5 D.P. Gregory, “Metal-Air Batteries”, Mills & Boon, London, 1972
    6張雲朋, “由空氣產生的新能源:鋅空氣燃料電池”, 科學發展 367, 2003
    7 S. Müller, F. Holzer, O. Haas, “Optimized Znic Elctrode for rechargeable Zinc-air Battery“, J. Appl. Electrochem. 28 (1998) 895-898
    8 F.R. Mclarnon, E.J. Cairns, ”The Secondary Alkaline Zinc Electrode”, J. Electrochem. Soc. 138 (1991) 645-664
    9 P.C. Foller, “Improved Slurry Zinc/Air Systems as Batteries for Urban Vehicle Propulsion”, J. Appl. Electrochem. 16 (1986) 527-543
    10 W.H. Zhu, B.A. Poole, D.R. Cahela, B.J. Tatarchuk, “New Structures of Thin Cathodes for Zinc-air Batteries”, J. Appl. Electrochem. 33 (2003) 29-36
    11 E. Yeger, “Dioxygen Electrocatalysis-Mechanisms in Relation to Catalyst Structure”, J. Mol. Catal. 38 (1986) 5-25
    12 K. Kinoshita, “Electrochemical Oxygen Technology”, John Wiley & Sons, Inc., 1992
    13 M. Yasumichi, Y Hiroshi, T. Hideo, “The Mechanism of Oxygen Reduction at a LaNiO3 Electrode”, Bullet. Chemic. Soc. Jap. 51 (1978) 1927-1930
    14 K. Kinoshita, “Carbon: electrochemical and physicochemical properties,” Wiley-Interscience, New York, 1988
    15蘇聖傑, “鋅-空氣電池陰極材料製備與特性分析”, 台灣大學化學工程研究所論文, 2000
    16金屬-空氣電池技術國際研討會, 2000
    17 L. Mao, D. Zhang, T. Sotomura, K. Nakatsu, N. Koshiba, T. Ohsaka, “Mechanistic study of the reduction of oxygen in air electrode with manganese oxides as electrocatalysts”, Electrochim. Acta 48 (2003) 1015-1021
    18 W. Zidong, H. Wenzhang, Z. Shengtao, T. Jun, “Carbon-based air electrodes carrying MnO2 in zinc-air batteries”, J. Power Sources 91 (2000) 83-85
    19 R. Boggio, A. Carugati, S. Trasatti, “Electrochemical Surface Properties of Co3O4 Electrodes”, J. Appl. Electrochem. 17 (1987) 828-840
    20元智大學第一次燃料電池研習會, 2000
    21 L. Neng, Y. Xiaoming, Z. Wanjing, L. Bingxiong, “Electrocatalytic activity of spinel-type oxides LiMn2-x CoxO4 with large specific surface areas for metal-air battery”, J. Power Sources 74 (1998) 255-258
    22 N. Li, J. Li, L.Yang, H. Gao, S. Li, B. Lin, “Electrocatalytic activities of LaCoxM1-x O3(M=Ni or Fe) synthesized at low temperature and acid-delithiated products for oxygen evolution/reduction in alkaline solution“, Electrochim. Acta 46 (2000) 717-722
    23 S. Youichi, U. Kenichi, M. Haruyuki, M. Norio, Y. Noboru, “Bi-functional Oxygen Electrode Using Large Surface Area La1-xCaxCoO3 for Rechargeable Metal-Air Battery“, J. Electrochem. Soc. 137 (1990) 3430-3433
    24 H.M. Zhang, Y. Shimizu, Y. Teraoka, N. Miura, N. Yamazoe, “Oxygen Sorption and Catalytic Properties of La1-xSrxCo1-yFeyO3 Perovskite-Type Oxide“, J. Catal. 121 (1990) 432-440
    25 N. Miura, M. Hayashi, T. Hyodo, N. Yamazoe, “Bi-Functional Oxygen Electrodes Using Pr-Mn-Fe-Based Perovskite-Type Oxides as Catalysts”, Materials Science Forum 315-317 (1999) 562-569
    26 A.M. Kannan, A.K. Shukla, S. Sathyanarayana, “A Lead-Iridium Pyrochlore Based Bifunctional Oxygen Electrode”, J. Electrochem. Soc. 281 (1990) 339-344
    27 H.S. Horowitz, J.M. Longo, H.H. Horowitz, “Oxygen Electrocatalysis on Some Oxide Pyrochlores”, J. Electrochem. Soc. 130 (1983) 1851-1859
    28 K. Tomantschger, K.V. Kordesch, “Structural-Analysis of Alkaline Fuel-Cell Electrodes and Electrode Materials“, J. Power Souces 25 (1989) 195-214
    29 M. Maja, C. Orecchia, M.Strano, P.Tosco, M. Vanni, “Effect of structure of the electrical performance of gas diffusion electrodes for metal air batteries”, Electrochim. Acta 46 (2000) 423-432
    30 H. Wendt, G. Kreysa, ”Electrochemical Engineering: Science and Technology in Chemical and Other Industries”, Springer-Verlag Berlin Heidelber, 1999
    31劉霖錡, “鋅空氣電池空氣極的製備與性能”, 逢甲大學材料與製造工程所論文, 2002
    32 C.C. Yang, “Preparation and characterization of electrochemical properties of air cathode electrode”, Int. J. of Hydrogen Energy 29 (2004) 135-143
    33 C.A. Vincent, B. Scrosati, M.Lazzari, F. Bonino “Modern Batteries”, Thomso Litho Ltd, East Kilbrid, Scotland, 1984
    34呂秉錚, “可機械充電式鋅空氣電池之電鍍鋅電極製程與其電化學行為之研究”, 清華大學材料所論文, 2001
    35 A. Renuka, A. Veluchamy, and N. Venkatakrishnan, “Effect of carbonate ions on the behavior of zinc in 30% KOH”, J. Power Sources 34 (1991) 381-385
    36唐宏怡, “空氣電極與鋅電極研發”, 鋅空氣電池技術及其在電動車的應用研討會, 1999
    37吉澤四郎, “最新電池工學”, 復漢出版社, 1981
    38 David Linden, “Handbook of Batteries”, McGraw-Hill Publishing company, New York, 1984
    39陳瑞凱, “適用於多種電池的組合式電池結構”, 中華民國專利199576號, 2004

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE