簡易檢索 / 詳目顯示

研究生: 陳虹伯
Chen, Hung-Po
論文名稱: 肺癌免疫療法研究之高良率細胞電融合晶片
Electrofusion Labchip with High Yield for the Immunotherapy Studies of Lung Cancer
指導教授: 劉承賢
Liu, Cheng-Hsien
口試委員: 盧向成
Lu, Shiang-Cheng
彭慧玲
Peng, Hwei-Ling
劉承賢
Liu, Cheng-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 英文
論文頁數: 86
中文關鍵詞: 細胞配對細胞融合微流體晶片癌症免疫治療生物物理
外文關鍵詞: cell pairing, cell electrofusion, microfluidic lab chip, cancer immunotherapy, biophysics
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨國人的生活型態改變,台灣地區主要死因由急性傳染病轉變為慢性疾病,根據衛生署統計自民國七十一年癌症即躍居十大死因的首位,而最新國人主要死因惡性腫瘤仍為主要死因,其中肺癌更是所有癌症中造成死亡數最多的病症之一。導致癌症的原因諸如致癌基因過度表現、先天性突變等,通常誘導癌症的產生為致癌基因的活化及抑癌基因經長時間的突變於多年後才被診斷出。癌細胞一旦產生後,細胞生長能力強並具有轉移轉化能力,因此早期惡性腫瘤被視為絕症;後來醫學上致力研究相關的對策,應用化療、輻射線、開刀等方法進行癌症治療相繼被提出,開刀雖可直接對腫瘤部位進行切除,但一旦癌細胞轉移後無法有效解決體內的癌細胞;化療方面簡單而言即是使用化學藥物來治療癌症,但是因化療所引起的副作用非常大,常會讓癌症患者為之卻步。
    上述傳統治療癌症方法皆無法有效的完全消除癌細胞,在醫學不斷進步下近年發展出許多新的癌症治療方式,包含基因療法、抑制促癌細胞蛋白質、抑制新血管生成、免疫療法等。其中免疫療法為一具潛力的選項,然而目前無法產出品質一致的疫苗為尚難以運用在臨床治療上的主要原因之一。樹狀細胞為一種吞噬細胞且是最強的抗原表現細胞,當抗原被樹狀細胞吞噬後,樹狀細胞會活化所謂適應性免疫系統進行身體防衛。過去使用聚二乙醇化學融合或隨機性電融合製造出的樹狀細胞疫苗,雖可誘導毒殺性T淋巴球的活化,但其融合率及品質都十分不穩定,本論文提出一可達成品質及臨床效果皆穩定的高良率細胞電融合疫苗晶片。透過快速精確的微流體晶片設計與微電極的搭配,改良疫苗製程的良率與品質,以利發展出具穩定融合率的疫苗。本論文達成完成一具有82%配對效率,72%融合效率以及整體大約60%疫苗產率之高產率細胞電融合晶片應用於肺癌免疫療法,期望未來可提供融合細胞疫苗於癌症治療上的相關研究,甚至包含單細胞及融合疫苗的活體兼容性、免疫活性、細胞交互作用試驗等。


    Cancer can be caused due to umpteen reasons, such as over expression of oncogenes, mutations in congenital etc. These are usually produced for the induction of cancer oncogene activation and tumor suppressor gene mutation by mutations for a long time (many years) before being diagnosed. Once the cancer cells are generated, the cancerous cell acquires the ability to transport itself into the normal tissue region.
    Cell fusion is an important tool that can be used to study genetic interactions between two different cell types. Researchers usually achieve in vitro cell fusion by utilizing biological (viruses or overexpressed cell-surface receptors), chemical (polyethylene glycol) or physical (electroporation) methods. This technology has been used for the formation of antibody-producing hybridomas from B cells and myeloma cells, and the generation of dendritic cells for immunotherapy associated applications via the fusion of dendritic cells with tumor cells. Recently, the transformation of somatic cells to pluripotent cells via the fusion of oocytes or embryonic stem cells with somatic cells has been explored.
    In recent years, many new cancer treatment modalities have been developed, including gene therapy, inhibition of cancer-promoting protein, inhibition of angiogenesis, immunotherapy, etc. The goal of this research is to provide an efficient microfluidic device for investigating cancer immunotherapy by using cell electrofusion technology. We successfully propose and fabricate a high yield cell electrofusion lab chip for the immunotherapy studies of lung cancer. Rapid and precise heterogeneous cell trapping and pairing micro-array structure was integrated with the corresponding sawtooth-shaped electrode array for applying electric field. Fusion of immune antigen presenting cells THP-1 with cancer cells A549 for the activation of the immune system to produce antibodies for cancer treatment was accomplished by using the device, and we achieved an average pairing efficiency of 82% and fusion efficiencies up to 72%. Almost 60% appropriately paired and fused cells over the entire chip which was six fold greater than the commercial electrofusion instruments. We hope that this technology will serve as a useful tool towards cancer research and its treatment in real life.

    ABSTRACT I 中文摘要 I TABLE OF CONTENTS III LIST OF FIGURES VI LIST OF TABLES XII CHAPTER 1 INTRODUCTION 1 1.1 BACKGROUND AND MOTIVATION 1 1.1.1 Bio-MEMS and Lab on a chip 1 1.1.2 Cell fusion 1 1.2 MOTIVATION AND OBJECTIVE 2 1.3 LITERATURE SURVEY 5 1.3.1 Cell fusion technology 5 1.3.1.1 Virus 6 1.3.1.2 Chemical method (PEG) 6 1.3.1.3 Physical method (Electrofusion) 7 1.3.2 Microfluidics technology for cell manipulation and pairing 7 1.3.2.1 Mechanical manipulation 8 1.3.2.2 Optical manipulation 10 1.3.2.3 Electrical manipulation 12 1.3.2.4 Hydrodynamical manipulation 13 1.3.3 Microfluidic lab chip for cell electrofusion 16 CHAPTER 2 DEVICE DEVELOPMENT 19 2.1 BACKGROUND REVIEW 19 2.1.1 Analysis of flow resistance in microfluidics 19 2.1.2 Membrane voltage 24 2.2 DESIGN CONCEPT 26 2.2.1 Design of bi-directional flow rapid heterogeneous cell pairing lab chip 28 2.2.1.1 Design of multi-branched channels 29 2.2.1.2 Numerical simulation of multi-branched channels 30 2.2.1.3 Design of rapid heterogeneous cell pairing channels 32 2.2.1.4 Operation principle of rapid heterogeneous cell pairing channels 33 2.2.1.5 Numerical simulation of rapid heterogeneous cell pairing channels 37 2.2.2 Design of cell electrofusion electrodes 41 2.2.2.1 Numerical simulation of sawtooth-shaped electrodes 42 2.2.3 Design of pulse signal generation circuit module 45 2.2.3.1 LM555 46 2.2.3.2 CD4017 46 2.2.3.3 Output number controllable pulse signal generation circuit module 46 2.2.3.4 PSPICE simulation results 47 CHAPTER 3 FABRICATION OF MICROCHIP AND PULSE SIGNAL GENERATOR 52 3.1 CHIP PROCESS FLOW 52 3.2 FABRICATION RESULTS 54 3.2.1 Microchannel 55 3.2.2 Electrodes 56 3.2.3 Bonding of microchannels and electrodes 57 3.3 CIRCUIT PROCESS FLOW 57 3.4 FABRICATION RESULTS 58 CHAPTER 4 EXPERIMENTAL SETUP AND METHODS 60 4.1 CELL MATERIALS 60 4.2 CELL PREPARATION FOR CELL ELECTROFUSION 61 4.3 CLEANING AND SURFACE MODIFICATION OF MICROCHANNEL 62 4.4 EXPERIMENTAL SETUP 62 4.5 THE PARAMETER SETUP FOR CELL ELECTROFUSION 63 CHAPTER 5 RESULTS AND DISCUSSION 65 5.1 PRELIMINARY TESTS 65 5.1.1 Rapid microparticles trapping/pairing demonstration with polystyrene beads 65 5.1.2 Cell electrofusion on sawtooth-shaped electrode array without cell trapping/pairing structure testing. 66 5.2 HETEROGENEOUS CELL PAIRING 67 5.2.1 Heterogeneous cell pairing results 67 5.2.2 Heterogeneous cell pairing efficiency 70 5.3 CELL ELECTROFUSION 72 5.3.1 Cell electrofusion results 72 5.3.2 Cell electrofusion efficiency 76 5.4 OUTPUT NUMBER CONTROLLABLE PULSE SIGNAL GENERATION CIRCUIT 78 CHAPTER 6 CONCLUSION AND FUTURE WORK 80 REFERENCE 82

    [1] Chen, E.H. & Olson, E.N. Unveiling the Mechanisms of Cell-Cell Fusion. Science 308, 369-373 (2005).
    [2] Ogle, B.M., Cascalho, M. & Platt, J.L. Biological implications of cell fusion. Nature Reviews Molecular Cell Biology 6, 567-575 (2005).
    [3] Chen, C.H., Grote, E., Mohler, W. & Vignery, A. Cell-cell fusion. FEBS Lett. 581, 2181-2193 (2007).

    [4] Robinson, J.M., Roos, D.S., Davidson, R.L. & Karnovsky, M.J. Membrane alterations and other morphological features associated with polyethylene glycol-induced cell fusion. Journal of Cell Science 40, 63-75 (1979).
    [5] Vaughan, V.L., Hansen, D. & Stadler, J. Parameters of polyethylene glycol-induced cell fusion and hybridization in lymphoid cell lines. Somatic Cell and Molecular Genetics 2, 537-544 (1976).
    [6] Neil, G. A. & Zimmermann, U. Electrofusion. Methods Enzymol 220, 174-196 (1993).
    [7] Zimmermann, U. Electric field-mediated fusion and related electrical phenomena. Biochim Biophys Acta 694, 227-277 (1982).
    [8] Yang, J., Zhao, L.P., Yin, Z.Q., Hu, N., Chen, J., Li, T.Y., Svir, I. & Zheng, X.L. Microelectrode array-based cell electrofusion. ADVANCED ENGINEERING MATERIALS 12, 398-405 (2010).
    [9] http://en.wikipedia.org/wiki/Management_of_cancer
    [10] http://www.stem-cell-solutions.com.au/training/research/96-cancer/167-immunotherapy-treatments
    [11] Kugler, A. et al. Regression of human metastatic renal cell carcinoma after vaccination with tumor cell-dendritic cell hybrids. Nat Med 6, 332-336 (2000).
    [12] Orentas, R.J., Schauer, D., Bin, Q. & Johnson, B.D. Electrofusion of a Weakly Immunogenic Neuroblastoma with Dendritic Cells Produces a Tumor Vaccine. Cellular Immunology 213, 4-13 (2001).
    [13] Guermonprez, P., Valladeau, J., Zitvogel, L., Théry, C. & Amigorena, S. ANTIGEN PRESENTATION AND T CELL STIMULATION BY DENDRITIC CELLS. Annual Review of Immunology 20, 621-667 (2002).
    [14] Schuler, G., Schuler-Thurner, B. & Steinman, R.M. The use of dendritic cells in cancer immunotherapy. Current Opinion in Immunology 15, 138-147 (2003).
    [15] Waldmann, T.A. Immunotherapy: past, present and future. Nat Med 9, 269-277 (2003).
    [16] Sukhorukov, V.L. et al. A biophysical approach to the optimisation of dendritic-tumour cell electrofusion. Biochemical and Biophysical Research Communications 346, 829-839 (2006).
    [17] Trontelj, K. et al. Optimization of bulk cell electrofusion in vitro for production of human–mouse heterohybridoma cells. Bioelectrochemistry 74, 124-129 (2008).
    [18] Siders, W.M., Garron, C., Shields, J. & Kaplan, J.M. Induction of Antitumor Immunity by Semi-Allogeneic and Fully Allogeneic Electrofusion Products of Tumor Cells and Dendritic Cells. Clinical and Translational Science 2, 75-79 (2009).
    [19] Ušaj, M., Trontelj, K., Miklavčič, D. & Kandušer, M. Cell–Cell Electrofusion: Optimization of Electric Field Amplitude and Hypotonic Treatment for Mouse Melanoma (B16-F1) and Chinese Hamster Ovary (CHO) Cells. Journal of Membrane Biology 236, 107-116 (2010).
    [20] Yang, J.-Y., Cao, D.-Y., Ma, L.-Y. & Liu, W.-C. Dendritic cells fused with allogeneic hepatocellular carcinoma cell line compared with fused autologous tumor cells as hepatocellular carcinoma vaccines. Hepatology Research 40, 505-513 (2010).
    [21] http://www.btxonline.com/ecm-2001-electro-cell-manipulator/
    [22] Yang, J. et al. Chip-Based Cell Electrofusion. Advanced Engineering Materials 12, B398-B405 (2010).
    [23] 羅立新編著, 細胞融合技術與應用, 化學工業出版社, 2003。
    [24] Okada, Y. & Bikens, J. The introduction of cell fusion with non-activity Xitai virus. Nature 1, 103-110 (1958).
    [25] Harris, H. & Watkins, J.F. HYBRID CELLS DERIVED FROM MOUSE AND MAN - ARTIFICIAL HETEROKARYONS OF MAMMALIAN CELLS FROM DIFFERENT SPECIES. Nature 205, 640-& (1965).
    [26] Pontecorvo, G. Production of mammalian somatic cell hybrids by means of polyethylene glycol treatment. Somatic Cell and Molecular Genetics 1, 397-400 (1975).
    [27] Davidson, R.L., O'Malley, K.A. & Wheeler, T.B. Polyethylene glycol-induced mammalian cell hybridization: Effect of polyethylene glycol molecular weight and concentration. Somatic Cell and Molecular Genetics 2, 271-280 (1976).
    [28] Zimmermann, U. Electric field-mediated fusion and related electrical phenomena. Biochimica et Biophysica Acta (BBA) - Reviews on Biomembranes 694, 227-277 (1982).
    [29] Yi, C., Li, C.-W., Ji, S. & Yang, M. Microfluidics technology for manipulation and analysis of biological cells. Analytica Chimica Acta 560, 1-23 (2006).
    [30] Nilsson, J., Evander, M., Hammarström, B. & Laurell, T. Review of cell and particle trapping in microfluidic systems. Analytica Chimica Acta 649, 141-157 (2009).
    [31] Zhu, L. et al. Filter-based microfluidic device as a platform for immunofluorescent assay of microbial cells. Lab on a Chip 4, 337-341 (2004).
    [32] Mohamed, H. et al. Development of a rare cell fractionation device: application for cancer detection. NanoBioscience, IEEE Transactions on 3, 251-256 (2004).
    [33] Moorthy, J. & Beebe, D.J. In situ fabricated porous filters for microsystems. Lab on a Chip 3, 62-66 (2003).
    [34] Huang, L.R., Cox, E.C., Austin, R.H. & Sturm, J.C. Continuous Particle Separation Through Deterministic Lateral Displacement. Science 304, 987-990 (2004).
    [35] Khademhosseini, A. et al. Molded polyethylene glycol microstructures for capturing cells within microfluidic channels. Lab on a Chip 4, 425-430 (2004).
    [36] Tani, H., Maehana, K. & Kamidate, T. Chip-Based Bioassay Using Bacterial Sensor Strains Immobilized in Three-Dimensional Microfluidic Network. Analytical Chemistry 76, 6693-6697 (2004).
    [37] Revzin, A., Tompkins, R.G. & Toner, M. Surface engineering with poly(ethylene glycol) photolithography to create high-density cell arrays on glass. Langmuir 19, 9855-9862 (2003).
    [38] Chronis, N. & Lee, L.P. Electrothermally Activated SU-8 Microgripper for Single Cell Manipulation in Solution. Microelectromechanical Systems, Journal of 14, 857-863 (2005).
    [39] Yang, M., Li, C.-W. & Yang, J. Cell Docking and On-Chip Monitoring of Cellular Reactions with a Controlled Concentration Gradient on a Microfluidic Device. Analytical Chemistry 74, 3991-4001 (2002).
    [40] Yi, C., Li, C.-W., Ji, S. & Yang, M. Microfluidics technology for manipulation and analysis of biological cells. Analytica Chimica Acta 560, 1-23 (2006).
    [41] Li, C.-W., Cheung, C.N., Yang, J., Tzang, C.H. & Yang, M. PDMS-based microfluidic device with multi-height structures fabricated by single-step photolithography using printed circuit board as masters. Analyst 128, 1137-1142 (2003).
    [42] Sinclair, J. et al. A Cell-Based Bar Code Reader for High-Throughput Screening of Ion Channel−Ligand Interactions. Analytical Chemistry 74, 6133-6138 (2002).
    [43] Khine, M., Lau, A., Ionescu-Zanetti, C., Seo, J. & Lee, L.P. A single cell electroporation chip. Lab on a Chip 5, 38-43 (2005).
    [44] Ashkin, A. & Dziedzic, J. Optical trapping and manipulation of viruses and bacteria. Science 235, 1517-1520 (1987).
    [45] http://www.physics.uq.edu.au/people/nieminen/trapping.html
    [46] Chiou, P.Y., Ohta, A.T. & Wu, M.C. Massively parallel manipulation of single cells and microparticles using optical images. Nature 436, 370-372 (2005).
    [47] Li, H. & Bashir, R. Dielectrophoretic separation and manipulation of live and heat-treated cells of Listeria on microfabricated devices with interdigitated electrodes. Sensors and Actuators B: Chemical 86, 215-221 (2002).
    [48] Voldman, J., Gray, M.L., Toner, M. & Schmidt, M.A. A Microfabrication-Based Dynamic Array Cytometer. Analytical Chemistry 74, 3984-3990 (2002).
    [49] Tan, W.-H. & Takeuchi, S. A trap-and-release integrated microfluidic system for dynamic microarray applications. Proceedings of the National Academy of Sciences 104, 1146-1151 (2007).
    [50] Carlo, D.D. & Lee, L.P. Dynamic Single-Cell Analysis for Quantitative Biology. Analytical Chemistry 78, 7918-7925 (2006).
    [51] Skelley, A.M., Kirak, O., Suh, H., Jaenisch, R. & Voldman, J. Microfluidic control of cell pairing and fusion. Nat Meth 6, 147-152 (2009).
    [52] Wang, J. & Lu, C. Microfluidic cell fusion under continuous direct current voltage. Applied Physics Letters 89, 234102-234103 (2006).
    [53] Techaumnat, B. et al. High-yield electrofusion of biological cells based on field tailoring by microfabricated structures. IET Nanobiotechnology 2, 93-99 (2008).
    [54] Gel, M. et al. Microorifice-Based High-Yield Cell Fusion on Microfluidic Chip: Electrofusion of Selected Pairs and Fusant Viability. NanoBioscience, IEEE Transactions on 8, 300-305 (2009).
    [55] Cao, Y. et al. Study of high-throughput cell electrofusion in a microelectrode-array chip. Microfluidics and Nanofluidics 5, 669-675 (2008).
    [56] Cao, Y. et al. Electric Field Simulation of High-throughput Cell Electrofusion Chip. Chinese Journal of Analytical Chemistry 36, 593-598 (2008).
    [57] Hu, N. et al. Polyimide Membrane Based Cell-electrofusion Chip. Chinese Journal of Analytical Chemistry 37, 1247-1252 (2009).
    [58] White, F.M. Viscous Fluid Flow, McGraw-Hill Companies, Inc, Boston (2006).
    [59] Weinberg, C. B. & Bell, E., A blood vessel model constructed from collagen and cultured vascular cells. Science 231, 397-400 (1986).
    [60] Chung, J., Kim, Y.-J. & Yoon, E. Highly-efficient single-cell capture in microfluidic array chips using differential hydrodynamic guiding structures. Applied Physics Letters 98, 123701-123703 (2011).
    [61] Teshima, T., Ishihara, H., Iwai, K., Adachi, A. & Takeuchi, S. A dynamic microarray device for paired bead-based analysis. Lab on a Chip 10, 2443-2448 (2010).
    [62] Marsden, H.R., Tomatsu, I. & Kros, A. Model systems for membrane fusion. Chemical Society Reviews 40, 1572-1585 (2011).
    [63] Sugar, I.P., Förster, W. & Neumann, E. Model of cell electrofusion: Membrane electroporation, pore coalescence and percolation. Biophysical Chemistry 26, 321-335 (1987).
    [64] Sancho, M., Martı́nez, G. & Martı́n, C. Accurate dielectric modelling of shelled particles and cells. Journal of Electrostatics 57, 143-156 (2003).
    [65] Chang, D.C., Chassy B.M., Saunders J.A. & Sowers A.E. Guide to Electroporation and Electrofusion, Academic Press, Inc, San Diego, California (1992).
    [66] Neumann, E., Sowers A.E. & Jordan C.A. Electroporation and Electrofusion in Cell Biology, Plenum Press, New York (1989).
    [67] Di Carlo, D., Aghdam, N. & Lee, L.P. Single-Cell Enzyme Concentrations, Kinetics, and Inhibition Analysis Using High-Density Hydrodynamic Cell Isolation Arrays. Analytical Chemistry 78, 4925-4930 (2006).
    [68] Carlo, D.D., Wu, L.Y. & Lee, L.P. Dynamic single cell culture array. Lab on a Chip 6, 1445-1449 (2006).
    [69] Lee, P.J., Hung, P.J., Shaw, R., Jan, L. & Lee, L.P. Microfluidic application-specific integrated device for monitoring direct cell-cell communication via gap junctions between individual cell pairs. Applied Physics Letters 86, 223902-223903 (2005).
    [70] Valero, A. et al. Apoptotic cell death dynamics of HL60 cells studied using a microfluidic cell trap device. Lab on a Chip 5, 49-55 (2005).
    [71] Tan, W.-H. & Takeuchi, S. Dynamic microarray system with gentle retrieval mechanism for cell-encapsulating hydrogel beads. Lab on a Chip 8, 259-266 (2008).
    [72] https://www.national.com/ds/LM/LM555.pdf
    [73] http://pdf1.alldatasheet.com/datasheet-pdf/view/50846/FAIRCHILD/CD4017.html
    [74] http://www.atcc.org/Attachments/1753.jpg
    [75] http://www.atcc.org/Attachments/2001.jpg
    [76] Zimmermann, U. Electromanipulation of Cells, CRC Press, London (1996).
    [77] Zimmermann, U. et al. Electromanipulation of mammalian cells: fundamentals and application. Plasma Science, IEEE Transactions on 28, 72-82 (2000).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE