研究生: |
連慧雯 Lien, Huei-Wen |
---|---|
論文名稱: |
利用核磁共振技術探討人類鈣離子結合之 S100A5突變蛋白(C43S/C80S)水溶液結構以及其與RAGE-V蛋白之間的交互作用 NMR Structure of Calcium-bound mutant S100A5(C43S/C80S) and its Interaction with RAGE V domain |
指導教授: |
余靖
Yu, Chin |
口試委員: |
洪嘉呈
莊偉哲 |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 81 |
中文關鍵詞: | S100A5蛋白質 、RAGE蛋白質 、核磁共振 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人類S100A5蛋白是S100蛋白質家族之一份子,這系列蛋白質結構具有高度相似性:皆具有EF-hand motif且會與鈣離子結合。在S100的眾多配體(ligand)中,其中RAGE(Receptor for Advanced Glycation Endproducts) 蛋白在近年來引起許多科學家的關注。RAGE是一種類免疫球蛋白,其與發炎現象、糖尿病等疾病相關。RAGE具有多樣化的配體,它們分別會與RAGE位於細胞外的不同部分反應,來誘導細胞產生訊息傳遞現象。近期研究中,科學家利用表面電漿共振指出,S100A5蛋白會與RAGE細胞外其中一部分(V domain)反應。
在本篇論文中,我們希望更進一步了解S100A5與RAGE-V之間的反應,以及研究所形成之複合物。為了不破壞RAGE-V之結構,我們將wild-type S100A5進行Cys-->Ser之突變(C43S/C80S,簡稱mS100A5),利用三維核磁共振實驗及軟體計算解出突變S100A5之三維結構後,以二維核磁共振滴定之方法,找出mS100A5與RAGE-V作用位置;另外結合恆溫滴定熱卡計、螢光等數據,來推測mS100A5與RAGE-V之結合比例與解離常數。而從實驗結果歸納出,mS100A5與RAGE-V以1:1之比例結合形成複合物,而其解離常數為 μM等級。本研究幫助我們更了解S100家族與RAGE-V反應之情形,然而後續仍需更多延伸之研究來分析這個反應,與探討此反應是否與實際生理情形相關。
[1]Marenholz, I., C.W. Heizmann, and G. Fritz, S100 proteins in mouse and man: from evolution to function and pathology (including an update of the nomenclature). Biochemical and Biophysical Research Communications, 2004. 322(4): p. 1111-1122.
[2]Marenholz, I., R.C. Lovering, and C.W. Heizmann, An update of the S100 nomenclature. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2006. 1763(11): p. 1282-1283.
[3]Handbook of Metalloproteins (A. Messerschmidt, W. Bode, &M. Cygler, eds.). 2004. 3: p. 529-540.
[4]Bhattacharya, S., C.G. Bunick, and W.J. Chazin, Target selectivity in EF-hand calcium binding proteins. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2004. 1742(1–3): p. 69-79.
[5]Vallely, K.M., et al., Solution Structure of Human Mts1 (S100A4) As Determined by NMR Spectroscopy†. Biochemistry, 2002. 41(42): p. 12670-12680.
[6]Ikura, M. and J.B. Ames, Genetic polymorphism and protein conformational plasticity in the calmodulin superfamily: Two ways to promote multifunctionality. Proceedings of the National Academy of Sciences of the United States of America, 2006. 103(5): p. 1159-1164.
[7]Wright, N.T., et al., Solution Structure of S100A1 Bound to the CapZ Peptide (TRTK12). Journal of Molecular Biology, 2009. 386(5): p. 1265-1277.
[8]Donato, R., S100: a multigenic family of calcium-modulated proteins of the EF-hand type with intracellular and extracellular functional roles. The International Journal of Biochemistry & Cell Biology, 2001. 33(7): p. 637-668.
[9]Schäfer, B.W., et al., Brain S100A5 Is a Novel Calcium-, Zinc-, and Copper Ion-binding Protein of the EF-hand Superfamily. Journal of Biological Chemistry, 2000. 275(39): p. 30623-30630.
[10]Teratani, T., et al., Restricted Expression of Calcium-Binding Protein S100A5 in Human Kidney. Biochemical and Biophysical Research Communications, 2002. 291(3): p. 623-627.
[11]Chan, W.Y., et al., Differential expression of S100 proteins in the developing human hippocampus and temporal cortex. Microscopy Research and Technique, 2003. 60(6): p. 600-613.
[12]Camby, I., et al., Differential expression of S100 calcium-binding proteins characterizes distinct clinical entities in both WHO grade II and III astrocytic tumours. Neuropathology and Applied Neurobiology, 2000. 26(1): p. 76-90.
[13]Hancq, S., et al., S100A5: a marker of recurrence in WHO grade I meningiomas. Neuropathology and Applied Neurobiology, 2004. 30(2): p. 178-187.
[14]Leclerc, E., et al., Binding of S100 proteins to RAGE: An update. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2009. 1793(6): p. 993-1007.
[15]Otterbein, L.R., et al., Crystal Structures of S100A6 in the Ca2+-Free and Ca2+-Bound States: The Calcium Sensor Mechanism of S100 Proteins Revealed at Atomic Resolution. Structure, 2002. 10(4): p. 557-567.
[16]Arnesano, F., et al., Structural Interplay between Calcium(II) and Copper(II) Binding to S100A13 Protein. Angewandte Chemie International Edition, 2005. 44(39): p. 6341-6344.
[17]Drohat, A.C., et al., Solution Structure of Calcium-Bound Rat S100B(ββ) As Determined by Nuclear Magnetic Resonance Spectroscopy†,‡. Biochemistry, 1998. 37(9): p. 2729-2740.
[18]Bertini, I., et al., Solution structure and dynamics of S100A5 in the apo and Ca<sup>2+</sup>-bound states. Journal of Biological Inorganic Chemistry, 2009. 14(7): p. 1097-1107.
[19]Krebs, J. and C.W. Heizmann, Calcium-binding proteins and the EF-hand principle, in New Comprehensive Biochemistry, K. Joachim and M. Marek, Editors. 2007, Elsevier. p. 51-93.
[20]Yan, S.D., et al., RAGE and amyloid-[beta] peptide neurotoxicity in Alzheimer's disease. Nature, 1996. 382(6593): p. 685-691.
[21]Hofmann, M.A., et al., RAGE Mediates a Novel Proinflammatory Axis: A Central Cell Surface Receptor for S100/Calgranulin Polypeptides. Cell, 1999. 97(7): p. 889-901.
[22]Hori, O., et al., The Receptor for Advanced Glycation End Products (RAGE) Is a Cellular Binding Site for Amphoterin. Journal of Biological Chemistry, 1995. 270(43): p. 25752-25761.
[23]Ramasamy, R., et al., Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology, 2005. 15(7): p. 16R-28R.
[24]Neeper, M., et al., Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. Journal of Biological Chemistry, 1992. 267(21): p. 14998-5004.
[25]Xie, J., et al., Structural Basis for Pattern Recognition by the Receptor for Advanced Glycation End Products (RAGE). Journal of Biological Chemistry, 2008. 283(40): p. 27255-27269.
[26]Schmidt, A.M., et al., Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. The Journal of Clinical Investigation, 1995. 96(3): p. 1395-1403.
[27]Heizmann, C.W., G.E. Ackermann, and A. Galichet, Pathologies Involving the S100 Proteins and Rage Calcium Signalling and Disease, E. Carafoli and M. Brini, Editors. 2008, Springer Netherlands. p. 93-138.
[28]Matsumoto, S., et al., Solution Structure of the Variable-Type Domain of the Receptor for Advanced Glycation End Products: New Insight into AGE−RAGE Interaction†,‡. Biochemistry, 2008. 47(47): p. 12299-12311.
[29]Huttunen, H.J., et al., Coregulation of Neurite Outgrowth and Cell Survival by Amphoterin and S100 Proteins through Receptor for Advanced Glycation End Products (RAGE) Activation. Journal of Biological Chemistry, 2000. 275(51): p.40096-40105.
[30]Businaro, R., et al., S100B protects LAN-5 neuroblastoma cells against Aβ amyloid-induced neurotoxicity via RAGE engagement at low doses but increases Aβ amyloid neurotoxicity at high doses. Journal of Neuroscience Research, 2006. 83(5): p. 897-906.
[31]Estelle Leclerc, C.W.H., The importance of Ca2+/Zn2+ signaling S100 proteins and RAGE in translational medicine Frontiers in Bioscience 2011: p. 1232-1262.
[32]Leclerc, E., et al., S100B and S100A6 Differentially Modulate Cell Survival by Interacting with Distinct RAGE (Receptor for Advanced Glycation End Products) Immunoglobulin Domains. Journal of Biological Chemistry, 2007. 282(43): p. 31317-31331.
[33]Estelle Leclerc, C.W.H., The importance of Ca2+/Zn2+ signaling S100 proteins and RAGE in translational medicine Frontiers in Bioscience 2011: p. 1232-1262.
[34]Iiyama, M., et al., Reactive oxygen species generated by hematopoietic cytokines play roles in activation of receptor-mediated signaling and in cell cycle progression. Cellular Signalling, 2006. 18(2): p. 174-182.
[35]Scher, H.I. and C.L. Sawyers, Biology of Progressive, Castration-Resistant Prostate Cancer: Directed Therapies Targeting the Androgen-Receptor Signaling Axis. Journal of Clinical Oncology, 2005. 23(32): p. 8253-8261.
[36]Schaeffer, H.J. and M.J. Weber, Mitogen-Activated Protein Kinases: Specific Messages from Ubiquitous Messengers. Molecular and Cellular Biology, 1999. 19(4): p. 2435-2444.
[37]Martindale, J.L. and N.J. Holbrook, Cellular response to oxidative stress: Signaling for suicide and survival*. Journal of Cellular Physiology, 2002. 192(1): p. 1-15.
[38]Huttunen, H.J., C. Fages, and H. Rauvala, Receptor for Advanced Glycation End Products (RAGE)-mediated Neurite Outgrowth and Activation of NF-κB Require the Cytoplasmic Domain of the Receptor but Different Downstream Signaling Pathways. Journal of Biological Chemistry, 1999. 274(28): p. 19919-19924.
[39]Dominguez, C., R. Boelens, and A.M.J.J. Bonvin, HADDOCK: A Protein−Protein Docking Approach Based on Biochemical or Biophysical Information. Journal of the American Chemical Society, 2003. 125(7): p. 1731-1737.
[40]Xue, J., et al., Advanced Glycation End Product Recognition by the Receptor for AGEs. Structure, 2011. 19(5): p. 722-732.