簡易檢索 / 詳目顯示

研究生: 曹翔崴
Tsao, Hsiang-Wei
論文名稱: 光浸潤效應分析於化學水浴法氧化、硫化鋅薄膜緩衝層在銅銦鎵硒硫太陽能電池之研究
Investigation of Light Soaking Effect on Chemical Bath Deposited Zn(O,S) Buffer Layer-based Cu(In,Ga)(S,Se)2 Thin Film Solar Cells
指導教授: 闕郁倫
Chueh, Yu-Lun
口試委員: 張培俊
Chung, Pai-Chun
何頌賢
Ho, Johnny C.
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 71
中文關鍵詞: 薄膜太陽能電池化學水浴法光浸潤效應銅銦鎵硒硫氧化、硫化鋅薄膜緩衝層
外文關鍵詞: Light Soaking Effect, Chemical Bath Deposition, Thin Film Solar Cells, Cu(In,Ga)(S,Se)2, Zn(O,S) Buffer layer
相關次數: 點閱:162下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 對於高效能與可撓式薄膜光伏模組來說,銅銦鎵硒硫太陽能電池是具有發展前景的。無鎘緩衝層的應用是希望減少有毒元素的用量,硫化鋅與氧化鋅類的薄膜緩衝層在短波長(400-500奈米)吸收率較高,成為主流的替代緩衝層,而此種薄膜。然而,利用水浴法製程的硫化鋅薄膜緩衝層,必定含有氫氧化鋅,它會降低元件效能,只能通過長時間的光浸潤或光熱浸潤的手法來回復元件效能,這會拉長製造過程時程,並在使用產品時造成極大的不便。
    為了克服這個問題,我們製造了銅銦鎵硒硫太陽能電池元件,其中利用化學水浴法(CBD)沉積出硫化鋅緩衝層,使用不同的水浴參數和後退火處理來比較。銅銦鎵硒硫太陽能電池的功率轉換效率和填充因子顯示出對氧化鋅薄膜緩衝層參數的相關性。當氧化鋅沉積在銅銦鎵硒硫薄膜上時,氫氧化鋅和氧化鋅也同時成長在此。 由於氫氧化鋅的帶隙較低,能帶圖偏移使效率降低。 經過光浸潤後,銅銦鎵硒硫太陽能電池的效率得到了改善。我們優化參數,減少光浸泡持續時間以達到功率轉換效率的飽和。也研究了在光浸潤下,隨時間的電性變化,並執行在光浸潤前後的SEM、TEM、XPS和EDX分析。


    Cu(In,Ga)(S,Se)2(CIGSSe) based solar cells are promising candidates for high efficiency flexible thin film photovoltaic modules. To reduce the usage of toxic elements, it is desirable to apply cadmium-free buffer layer deposition process. Zn(O,S) based thin films have become the mainstream alternative buffer layer due to its low absorption in short wavelength region (400-500 nm). However, with chemical bath deposition (CBD)-ZnS buffer layer, it must have Zn(OH)2. The presence of Zn(OH)2 deteriorates the device performance and can only be recovered though time-consuming light or heat-light soaking procedures which slows down the manufacturing process and causes great inconvenience while using the products.
    To overcome this obstacle, we fabricated CIGSSe solar cells with a CBD-ZnS buffer layer grown with varying aqueous solution recipe and post annealing treatments. The power conversion efficiency and the fill factor of the CIGSSe solar cells reveal a dependence on the deposition of CBD-ZnS films. When ZnS deposit on CIGSSe film, hydroxide and oxide species also deposit on it. Because of the lower band gap of Zn(OH)2, the resulting band diagram offsets deteriorates the efficiency. After the light soaking process, the performance of the CIGSSe solar cell was improved. We optimized the parameters in order to reduce the light soaking duration to reach the saturation of power conversion efficiency. We also measured the electrical properties of CIGSSe solar cells during light soaking process. To investigated the mechanism of the light soaking process, we took the SEM, TEM, XPS and EDX analysis before and after light soaking.

    摘要 1 ABSTRACT 2 致謝 3 CONTENTS 4 LIST OF FIGURES 7 LIST OF TABLES 10 Chapter 1 Introduction 11 1.1. Preface 11 1.2. Different types of solar cell 13 1.2.1. Silicon based solar cell 14 1.2.2. Semiconductor compounds 15 1.2.3. Emerging or novel materials 16 Chapter 2 Literature review and theoretical framework 18 2.1. Basic principle and characteristic of solar cells 18 2.1.1. Solar spectrum 18 2.1.2. Basic principle of solar cell 21 2.2. CIGS solar cell introduction 27 2.2.1. CIGS introduction and development potential 27 2.2.2. CIGS device structure 28 2.3. Buffer layer of CIGS solar cells 31 2.3.1. Types of buffer layer 31 2.3.2. ZnS 32 2.3.3. CBD-ZnS process 32 2.4. Post treatments 34 2.4.1. Ammonia solution etching 34 2.4.2. Air Annealing 35 2.5. Light soaking 36 2.6. Motivation 38 Chapter 3 Experiment and Analysis 39 3.1. Fabrication instrument 39 3.1.1. Thermostatic bath 39 3.1.2. Chemical 39 3.2. Experimental procedure 40 3.2.1. CBD-ZnS 40 3.2.2. ZnO/ITO window layer and Al electrode 41 3.2.3. Device measurement and light soaking 41 3.3. Analysis instrument 42 3.3.1. Solar cell simulator system 42 3.3.2. UV -Visible Spectroscope 44 3.3.3. Transmission electron microscope, TEM 45 3.3.4. Scanning electron microscope, SEM 46 3.3.5. Electron spectroscopy for chemical analysis 47 3.3.6. Energy dispersive spectrometers, EDS 48 3.3.7. Photoluminescence system, PL 49 3.3.8. IPCE (Incident photon to current efficiency) / EQE (external quantum efficiency) System 51 Chapter 4 Results and Discussion 52 4.1. Cleaning of CIGSSe surface 52 4.2. Air annealing optimized 53 4.3. CBD-ZnS 55 4.4. Device performance and light soaking 56 4.5. EQE analysis 58 4.6. C-V measurement 59 4.7. TEM-EDX analysis of the CIGSSe/ZnS interface 61 4.8. XPS analysis 62 4.9. Reversible characteristics of the light soaking effect 65 Chapter 5 Conclusions 67 Chapter 6 Future Perspective 68 Chapter 7 References 69 LIST OF FIGURES Figure 1 1 World total installed capacity 12 Figure 1 2 Different types of solar cell[1] 13 Figure 1 3 Material absorption coefficient and photon energy diagram[2] 14 Figure 1 4 CIGS absorption layer structure (a) Zincblende (b) Chalcopyrite 16 Figure 2 1 Solar spectrum at the top of the atmosphere and at sea level[3] 20 Figure 2 2 The definition of AM parameter[4] 20 Figure 2 3 Solar cell structure: p-n junction diode 22 Figure 2 4 Solar cell equivalent circuit 24 Figure 2 5 CIGS solar cell I-V curve 26 Figure 2 6 Best research-cell efficiencies[5] 28 Figure 2 7 CIGS device structure 30 Figure 2 8 (a) Hexagonal (Wurtzite) crystal structure; (b) Cubic (zinc blende) structure 32 Figure 2 9 SEM photograph of ZnS(O,OH) buffer layer deposited on a CIGS thin film with (right) and without (left) ammonia rinsing. 34 Figure 2 10 I-V characteristics of CBD-ZnS/CIGS solar cells (a) without and (b) with ammonia rinsing 35 Figure 2 11 I-V characteristics of the ZnS/CIGS solar cells (a) without and (b) with air annealing at 200℃ for 10 mins 36 Figure 2 12 Zn(S,O) band gap change with composition by ALD[30] 37 Figure 2 13 Device efficiency changes with H2S/(H2O+H2S)[30] 38 Figure 3 1 CBD-ZnS process steps 40 Figure 3 2 NH4OH etching and air annealing process 41 Figure 3 3 Light soaking conditions 42 Figure 3 4 The spectrum of the AM 0 and AM 1.5 at 6000k 43 Figure 3 5 Solar cell simulator system 43 Figure 3 6 UV -Visible Spectroscope (Hitachi U-4100) 44 Figure 3 7 Japan JEOL JEM-F200 HRTEM 45 Figure 3 8 ESCA of ULVAC-PHI PHI 5000 Versaprobe II 48 Figure 3 9 EDS element analysis 49 Figure 3 10 Photoluminescence principle diagram 50 Figure 3 11 Photoluminescence system diagram 50 Figure 4 1 Etching process by HCl and NH4OH solution 52 Figure 4 2 SEM/EDX and EDX spectrum 53 Figure 4 3 Heating curve of air annealing 54 Figure 4 4 UV-Visible spectrum with different reaction time 55 Figure 4 5 (a) Top view and (b) cross section of SEM image 56 Figure 4 6 Electrical measurement of (a) Jsc, (b) Voc, (c) Fill factor and (d) Efficiency during light soaking 57 Figure 4 7 Static plot of measurement for (a) Jsc, (b) Voc, (c) Fill factor and (d) Efficiency before and after light soaking 58 Figure 4 8 EQE spectra of (a) 17 mins,(b) 20 mins and (c) 22 mins before and after light soaking of different reaction time 59 Figure 4 9 C-V measurement for (a) t=17 mins (b) t=20 mins (c) t=22 mins before and after light soaking 60 Figure 4 10 TEM images and EDX data of (a) t=17 mins, (b) t=20 mins and (c) t=22 mins the ZnS/CIGSSe interface 61 Figure 4 11 TEM-EDX S/(S+O) ratio of (a) t=17 mins , (b) t=20 mins and (c) t=22 mins 62 Figure 4 12 XPS measurement of Zn2P bonding energy before and after light soaking 63 Figure 4 13 Peak fitting of Zn2P (a) before and (b) after light soaking 63 Figure 4 14 XPS profile (a) before and (b) after light soaking 64 Figure 4 15 S/(S+O) profile of t=22 mins before and after light soaking 65 Figure 4 16 Comparison of light soaking after 21 days for (a) t=17 mins, (b) t=20 mins and (c) t=22 mins 66 LIST OF TABLES Table 1 1 Yearly Solar Fluxes & Human Energy Consumption 12 Table 4 1 Compositions of EDX analysis 53 Table 4 2 Temperature optimized of air annealing 54 Table 4 3 Time optimized of air annealing 54 Chapter 1

    1. Ibn-Mohammed, T., et al., Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies. Renewable and Sustainable Energy Reviews, 2017. 80: p. 1321-1344.
    2. Sampathkumar, M., Processing of Advanced Two-Stage CIGS Solar Cells. 2013.
    3. Wu, H.W., et al., Design and Fabrication of an Albedo Insensitive Analog Sun Sensor. Vol. 25. 2011. 527-530.
    4. TAN, Y.T., Impact on the Power System with a large penetration of PV Genera-tion, in Dept. of Electrical Engineering and Electronics- UMSIT. 2004.
    5. The National Renewable Energy Laboratory. Available from: https://www.nrel.gov/.
    6. Wei, S.-H., S.B. Zhang, and A. Zunger, Effects of Na on the electrical and structural properties of CuInSe2. Journal of Applied Physics, 1999. 85(10): p. 7214-7218.
    7. Kronik, L., D. Cahen, and H.W. Schock, Effects of Sodium on Polycrystalline Cu(In,Ga)Se2 and Its Solar Cell Performance. Advanced Materials, 1998. 10(1): p. 31-36.
    8. Rudigier, E., et al., Real-time study of phase transformations in Cu–In chalcogenide thin films using in situ Raman spectroscopy and XRD. Journal of Physics and Chemistry of Solids, 2005. 66(11): p. 1954-1960.
    9. Yoon, J.-H., et al., Optical analysis of the microstructure of a Mo back contact for Cu(In,Ga)Se2 solar cells and its effects on Mo film properties and Na diffusivity. Solar Energy Materials and Solar Cells, 2011. 95(11): p. 2959-2964.
    10. Minemoto, T., et al., Theoretical analysis of the effect of conduction band offset of window/CIS layers on performance of CIS solar cells using device simulation. Solar Energy Materials and Solar Cells, 2001. 67(1-4): p. 83-88.
    11. Nakada, T. and M. Mizutani, 18% Efficiency Cd-Free Cu(In, Ga)Se2 Thin-Film Solar Cells Fabricated Using Chemical Bath Deposition (CBD)-ZnS Buffer Layers. Japanese Journal of Applied Physics, 2002. 41(Part 2, No. 2B): p. L165-L167.
    12. Ramanujam, J. and U.P. Singh, Copper indium gallium selenide based solar cells – a review. Energy Environ. Sci., 2017. 10(6): p. 1306-1319.
    13. Akinmasa Yamada, H.T., Koji Matsubara, Shigeru Niki, Keiichiro Sakurai, Shogo Ishizuka, Kakuya Iwata, Compound solar cell and process for producing the same. 2005.
    14. Negami, T., et al. Cd free CIGS solar cells fabricated by dry processes. in Photovoltaic Specialists Conference, 2002. Conference Record of the Twenty-Ninth IEEE. 2002. IEEE.
    15. Hariskos, D., S. Spiering, and M. Powalla, Buffer layers in Cu (In, Ga) Se2 solar cells and modules. Thin Solid Films, 2005. 480: p. 99-109.
    16. Naghavi, N., et al., High‐efficiency copper indium gallium diselenide (CIGS) solar cells with indium sulfide buffer layers deposited by atomic layer chemical vapor deposition (ALCVD). Progress in Photovoltaics: Research and Applications, 2003. 11(7): p. 437-443.
    17. Rusu, M., et al., Formation of the physical vapor deposited Cd S∕ Cu (In, Ga) Se 2 interface in highly efficient thin film solar cells. Applied physics letters, 2006. 88(14): p. 143510.
    18. Glatzel, T., et al., Surface photovoltage analysis of thin CdS layers on polycrystalline chalcopyrite absorber layers by Kelvin probe force microscopy. Nanotechnology, 2008. 19(14): p. 145705.
    19. Vidal, J., et al., Influence of NH3 concentration and annealing in the properties of chemical bath deposited ZnS films. Materials chemistry and physics, 1999. 61(2): p. 139-142.
    20. Cheng, J., et al., Chemical bath deposition of crystalline ZnS thin films. Semiconductor science and technology, 2003. 18(7): p. 676.
    21. Kang, S.R., et al., Effect of pH on the characteristics of nanocrystalline ZnS thin films prepared by CBD method in acidic medium. Current Applied Physics, 2010. 10(3): p. S473-S477.
    22. O'Brien, P. and J. McAleese, Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS. Journal of Materials Chemistry, 1998. 8(11): p. 2309-2314.
    23. Oladeji, I.O. and L. Chow, A study of the effects of ammonium salts on chemical bath deposited zinc sulfide thin films. Thin Solid Films, 1999. 339(1-2): p. 148-153.
    24. Hodes, G., Chemical solution deposition of semiconductor films. 2002: CRC press.
    25. Kobayashi, T., et al., Cu (In, Ga) Se2 thin film solar cells with a combined ALD-Zn (O, S) buffer and MOCVD-ZnO: B window layers. Solar Energy Materials and Solar Cells, 2013. 119: p. 129-133.
    26. Kushiya, K., et al., Application of Zn-compound buffer layer for polycrystalline CuInSe2-based thin-film solar cells. Japanese journal of applied physics, 1996. 35(8R): p. 4383.
    27. Amin, E.A. and D.G. Truhlar, Zn coordination chemistry: development of benchmark suites for geometries, dipole moments, and bond dissociation energies and their use to test and validate density functionals and molecular orbital theory. Journal of chemical theory and computation, 2008. 4(1): p. 75-85.
    28. Hass, G., et al., Effect of UV irradiation on evaporated ZnS films. Applied optics, 1980. 19(15): p. 2480-2481.
    29. Kobayashi, T., H. Yamaguchi, and T. Nakada, Effects of combined heat and light soaking on device performance of Cu (In, Ga) Se2 solar cells with ZnS (O, OH) buffer layer. Progress in Photovoltaics: Research and Applications, 2014. 22(1): p. 115-121.
    30. Nakashima, K., et al., Wide-gap Cu (In, Ga) Se2 solar cells with Zn (O, S) buffer layers prepared by atomic layer deposition. Japanese Journal of Applied Physics, 2012. 51(10S): p. 10NC15.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE