研究生: |
吳嘉偉 Wu, Chia-Wei |
---|---|
論文名稱: |
Synthesis and Characterizations of High Yield a-FeOOH Nanorods and Fe3O4/SiO2 Magnetic Core-Shell Nanorods 高產率α相鐵氫氧化物奈米棒及四氧化三鐵/二氧化矽磁性核瞉奈米棒合成及特性研究 |
指導教授: |
周立人
Chou, Li-Jen |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 74 |
中文關鍵詞: | 氧化鐵 、奈米棒 |
外文關鍵詞: | iron oxides, nanorods |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
High yield α-FeOOH nanorods were successfully synthesized by hydrolysis and hydrothermal methods. Results of differential thermal analysis (DTA) showed that the second thermal decomposition temperature of ammonium perchlorate (AP) was decreased by adding α-FeOOH nanorods into AP. Furthermore, the optimum mixing ratio was 25: 1 (AP : α-FeOOH nanorods), which caused the heat release to increase 3.2 times and the second decomposition temperature to decrease about 50 °C compared with pure AP. High surface to volume ratio of one dimensional nanomaterial resulted in high absorptions of NO, NO2 and NH3 in the decomposition process of AP. Hence, α-FeOOH nanorods exhibited a good catalytic property which will enhance the thermal decomposition of AP.
The second part of this thesis is the synthesis of magnetic core-shell nanorods. First, α-FeOOH/SiO2 core-hell nanorods were fabricated by way of StÖber growth, then they were converted to Fe3O4/SiO2 or Fe/SiO2 core-shell nanorods at 500 °C in different reductive environments. The thickness of outer SiO2 shell could be tuned by controlling the amount of tetraethoxysilane (TEOS). To investigate the magnetic properties, we employed vibration sample magnetometer (VSM) and superconducting quantum interference device (SQUID) measurements to measure the coercivities and magnetizations of Fe3O4/SiO2 and Fe/SiO2 core-shell nanorods. It was observed that Fe3O4/SiO2 and Fe/SiO2 core-shell nanorods exhibited higher coericivities (about 350 Oe and 603 Oe, respectively) than 1-D pure iron-based nanostructures, this was attributed to the reduced inter-particle interaction due to the hindrance of the contact of magnetic nanorods by the outer uniform non-magnetic shells.
經由混合水解及水熱法成功合成出高產率的α相鐵氫氧化物奈米棒並透過熱差分析(DTA)的結果發現將此奈米棒與過氯酸銨均勻混合之後,能有效地降低過氯酸銨的第二熱分解溫度。由於一維奈米材料具有高表面積比及高深寬比的特性,所以在參與過氯酸銨分解過程中,可以吸附更多的一氧化氮、二氧化氮及氨氣以致α相鐵氫氧化物奈米棒大大地促進過氯酸銨的熱分解效率。再者,當過氯酸銨與α相鐵氫氧化物以重量比為二十五比一混合時,則展現出最好的催化效果,放熱量和熱分解溫度分別增加三點二倍及降低五十度。
第二部分是將α相鐵氫氧化物當做前驅物轉換成二氧化矽包覆四氧化三鐵殼核結構奈米棒。首先使用溶膠凝膠法將二氧化矽均勻的包覆在α相鐵氫氧化物奈米棒外圍,接著昇溫至攝氏五百度然後通氫氣還原,可藉由通入還原氣氛的強弱來控制所生成的相,分別形成使內層發生相轉變成四氧化三鐵或是純鐵及鐵氧化物。經由振動樣品磁儀分析(VSM)得知,此殼核狀奈米棒具有鐵磁的特性,而且矯頑磁場高達三百五十奧斯特(Oe),這比文獻報導純的鐵磁四氧化三鐵奈米線的矯頑磁場大出七十個奧斯特,二氧化矽包覆純鐵及鐵氧化物其矯頑磁場更是高達六百奧斯特比文獻報導純的鐵奈米線的矯頑磁場大出三百個奧斯特。推論原因是由於外層非磁性的二氧化矽當作內層磁性材料的阻擋物使得磁性粒子間的交互作用因為彼此距離增加而減少,即為所謂的內粒子交互作用。
Chapter 1
[1.1] A. P. Alivisatos, “Semiconductor Clusters, Nanocrystals, and Quantum Dots,“ Science 271, pp. 933-937 (1996)
[1.2] K. L. Wang, S. Tong, and H. J. Kim, “Properties and Applications of SiGe Nanodots,“ Materials Science In Semiconductor Processing 8, pp. 389-399 (2005)
[1.3] Z. L. Wang (Ed.), “Nanowires and Nanobelts – Materials, Properties and Devices,“ Springer, ISBN 978-0-387-28706-5 (2004)
[1.4] David H. Cobden, “Molecular electronics: Nanowires Begin To Shine,“ Nature 409, pp. 32-33 (2001)
[1.5] H. J. Dai, E. W. Wong, Y. Z. Lu, S. S. Fan, and C. M. Lieber, “Synthesis and Characterization of Carbide Nanorods,“ Nature 375, pp. 769-772 (1995)
[1.6] Philip G. Collins, A. Zettl, Hiroshi Bando, Andreas Thess, and R. E. Smalley, “Nanotube Nanodevices,“ Science 278, pp. 100-103 (1997)
[1.7] L. Yang, Z. Zhang, R. Huang, G. Zhang, and X. An, “Synthesis of Single Crystalline GaN Nanoribbons On Sapphire (0001) Substrates,“ Solid State Communications 130, pp. 769-772 (2004)
[1.8] T. I. Kamins, K. L. Wang, and G. E. Davis, “SiGe/Si Superlattices on Implanted Buried-Oxide Structures,“ Journal of Applied Physics 65, pp. 1505-1509 (1989)
[1.9] Y. N. Xia, P. D. Yang, Yugang Sun, Yiying wu, Brian Mayers, Byron Gates, Yadong Yin, Franklin Kim, and Haoquan Yan, “One-dimensional Nanostructures: Synthesis, Characterization, and Applications,“ Advanced Materials 15, pp. 353-389 (2003)
[1.10] P. Buffat and J. P. Borel, “Size Effect On the Melting Temperature of Gold Particles,“ Physical Review A 13, pp. 2287-2293 (1976)
[1.11] U. Jeong, X. W. Teng, Y. Wang, H. Yang, Y. N. Xia, “Superparamagnetic Colloids: Controlled Synthesis and Niche Applications,“ Advanced Materials 19, pp. 33-60 (2007)
[1.12] J. M. Perez, “ The Hidden Talent,“ Nature Nanotechnology 2, pp. 535-536 (2007)
[1.13] L. J. Sherry, S. H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wi, Y. N. Xia, “Localized Surface Plasmon Resonance Spectroscopy of Single Silver Triangular Nanoprisms,“ Nano Letters 6, pp. 2060-2065 (2006)
[1.14] Clemens Burda, Xiaobo Chen, Radha Narayanan, and Mostafa A. El-Sayed,
“Chemistry and Properties of Nanocrystals of Different Shapes,“ Chemical Reviews 105, pp. 1025-1102 (2005)
[1.15] B. Vincenzo, C. Alberto, V. Margherita, “The Bottom-up Approach to Molecular-level Devices and Machines,“ Chemistry- A European Journal 8, pp. 5524-5532 (2002)
[1.16] X. B. Chen, and Samuel S. Mao, “Titanium Dioxide Nanomaterials: Synthesis, Properties, Modifications, and Applications,“ Chemical Reviews 107, pp. 2891-2959 (2007)
[1.17] U. Schwertmann, and R. M. Cornell (Ed.), “Iron Oxides In the Laboratory,“ WILEY- VCH second edition, ISBN 3-527-29669-7 (2000)
[1.18] U. Schwertmann, and R. M. Cornell (Ed.), “The Iron Oxides,“ WILEY- VCH second edition, ISBN 3-527-30274-3 (2003)
[1.19] Y. Piao, J. Kim, N. H. Bin, D. Kim, J. S. Baek, Ko, M. K.; J. H. Lee, M. Shokouhime, “Wrap–Bake–Peel Process for Nanostructural Transformation from β-FeOOH Nanorods to Biocompatible Iron Oxide Nanocapsules,“ Nature Materials 7, pp. 242-247 (2008)
[1.20] J. Chen, X. Y. Chen, L. S. Gou, “Alpha- Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications,“ Advanced Materials 17, pp. 582-586 (2005)
[1.21] X. Wang, X. Y. Chen, L. S. Gao, “ α-Fe2O3 Nanotubes in Gas Sensor and Lithium-Ion Battery Applications,” Journal of Materials Chemistry 14, pp. 905-907 (2004)
[1.22] United States Patent No. 4424085, Fukuma et al. Jan. 3 (1984)
[1.23] A. Luengnaruemitchai, S. Osuwan, E. Gulari, “Comparative studies of low-temperature water–gas shift reaction over Pt/CeO2, Au/CeO2, and Au/Fe2O3 catalysts,“ Catalysis Comunications 4, pp. 215-221 (2003)
[1.24] Y. Zhang, G. Xu, P. Ou, G. R. Han, “Preparation and Catalytic Property of Single Crystal Multiporous Alpha-Fe2O3 Nanorods,“ Journal of Inorganic Materials 23, pp. 459-463 (2008)
[1.25] K. Kaneko and K. Inouye, “Electrical Conductivity Changes in α-FeOOH and β-FeOOH upon Surface Dehydration,“ Bulletin of the Chemical Society of Japan 49, pp. 3689-3690 (1976)
[1.26] E. De Grave and R. E. Vandenberghe, “57Fe Mssöbauer Effect Study of Well-Crystallized Goethite,“ Hyperfine Interactions 28, pp. 643-646 (1986)
[1.27] J. H. A. Van der Woude and P. L. De bruyn, “Formation of Colloidal Dispersions From Supersaturated Iron (III) Nitrate Solutions. V. Synthesis of Monodisperse Goethite Sols,“ Colloids and Surfaces 12, pp. 179-188 (1984)
[1.28] R. J. Atkinson, “ The Formation of Iron (III) Oxide Hydroxides From Iron (III) Oxalate,” Australian Journal of Chemistry 29, pp. 2149-2158 (1976)
[1.29] O. Ping, X. Gang, R. Zhaohui, H. Xiaohong and H. Gaorong, “ Hydrothrmal Synthesis and Characterization of Uniform of α- FeOOH Nanowires in High Yield,” Material Letters 62, pp. 914-917 (2008)
[1.30] A. R. Hall and G. S. Pearson, “Ammonium Perchlorate As An Oxidizer,” Oxidation And Combustion Reviews 3, pp. 129-239 (1968)
[1.31] A. Al Harthi and A. Williams, “Effect of Fuel Binder and Oxidiser Particle Diameter On The Combustion of Ammonium Perchlorate Based Propellants,” Fuel 77, pp. 1451-1468 (1998)
[1.32] V. V. Boldyrev, “Thermal Decomposition of Ammonium Perchlorate,” Thermochimica Acta 443, pp. 1-36 (2006)
[1.33] T. M. Fu, F. Q. Liu, L. Liu, L. W. Guo and F. S. Li, “Catalytic Thermal Decomposition of Ammonium Perchlorate Using Manganese Oxide Octahedral Molecular Sieve (OMS),” Catalysis Communications 10, pp. 108-112 (2008)
[1.34] S. R. Jain and P. R. Nambiar, “Effect of Tetramethylammonium Perchlorate On Ammonium Perchlorate And Propellant Decomposition,” Thermochimica Acta 16, pp. 49-54 (1976)
[1.35] S. M. Shen, S. I. Chen and B. H. Wu, “ The Thermal-Decomposition of Ammonium- Perchlorated (AP) Containing A Burning-Rate Modified,” Thermochimica Acta 223, pp. 135-143 (1993)
[1.36] S. Vyazovkin and A. W. Charles, “Kinetics of Thermal Decomposition of Cubic Ammonium Perchlorate,” Chemistry of Materials 11, pp. 3386-3393 (1999)
[1.37] S. Banerjee and S. R. Chakravarthy, “Ammonium Perchlorate- Based Composite Solid Propellant Formulations With Plateau Burning Rate Trends,” Combustion, Explosion and Shock Waves 43, pp. 435-441 (2007)
[1.38] L. Liping, S. Xuefei, Q. Xiaoqing, X. Jiaoxing and L. Guangshe, “Nature of Catalytic Activities of CoO Nanocrystals in Thermal Decomposition of Ammonium Perchlorate ,” Inorganic Chemistry 47, pp. 8839-8846 (2008)
[1.39] W. Yanping, Z. Junwu, Y. Xujie, L. Lude and W. Xin, “Preparation of NiO Nanoparticles and Their Catalytic Activity in the Thermal Decomposition of Ammonium Perchlorate,” Thermochimica Acta 437, pp. 106-109 (2005)
[1.40] X. F. Sun, X. Q. Qiu, L. P. Li and G. S. Li, “ZnO Twin-Cones: Synthesis, Photoluminescence, and Catalytic Decomposition of Ammonium Perchlorate,” Inorganic Chemistry 47, pp. 4146-4152 (2008)
[1.41] X. Hua, W. Xiaobing and Z. Lizhi, “Selective Preparation of Nanorods and Micro-Octahedrons of Fe2O3 and Their Catalytic Performances for Thermal Decomposition of Ammonium Perchlorate,” Powder Technology 185, 176-180 (2007)
[1.42] W. Q. Pang and X. Z. Fan, “Application Progress of Nanometer Meter Oxide Catalysts in Solid Propellant,” Chemical Propellants & Polymeric Materials 6, pp. 20-24 (2008)
[1.43] Fukuma et al, United States Patent No. 4424085 (1984)
[1.44] R. P. Rastogi, G. Singh and R. R. Singh, “Mixture of Oxides of Copper and Chromium As Potential Burning-rate Catalysts For Composite Solid- propellants,” Combustion and Flame 33, pp. 305-310 (1978)
[1.45] W. StÖber, A. Fink, E. Bohn, “ Controlled Growth of Monodisperse SiO2 Sphere in Micron Size Range,” Journal of Colloid and Interface Science 26, pp. 62-69 (1968)
[1.46] G. H. Bogush, C. F. Zukoski, “Uniform SiO2 Particle- Precipitation- An Aggregative Growth Model,” Journal of Colloid and Interface Science 142, pp. 19-34 (1991)
[1.47] R. K. Iler, United States Patent No. 2885366 (1959)
[1.48] M. Ohmori, E. Matijevic, “Preparation and Properties of Uniform Coated Colloidal Particles. 7. SiO2 on Hematite,” Journal of Colloid and Interface Science 150, pp. 594-598 (1992)
[1.49] Y. Lu, Y. D. Yin, B. T. Mayers and Y. N. Xia, “Modifying the Surface Properties of Superparamagnetic Iron Oxide Nanoparticles through A Sol- Gel Approach,” Nano Letters 2, pp. 183-186 (2002)
[1.50] M. T. Chung, L. J. Chou, C. H. Hsieh, Y. L. Chueh, Z. L. Wang, Tasukazu Murakami and Daisuke Shindo, “Magnetic and Electrical Characterization of Half- Metallic Fe3O4 Nanowires,” Advanced Materials 19, pp. 2290-2294 (2007)
[1.51] Y. L. Chueh, M. W. Lai, J. Q. Liang, L. J. Chou and Z. L. Wang, “Systematic Study of the Growth of Aligned Arrays of α-Fe2O3 and Fe3O4 Nanowires by a Vapor-Solid Process,” Advanced Functional Materials 16, pp. 2243-2251 (2006)
[1.52] J. Wang, Q. Chen, C. Zeng and B. Hou, “Magnetic-Field-Induced Growth of Single- Cyrstalline Fe3O4 Nanowires,” Advanced Materials 16, pp. 137-140 (2004)
[1.53] J. B. Yang, H. Xu, S. X. You, X. D. Zhou, C. S. Wang, W. B. Yelon and W. J. James, “Large Scale Growth and Magnetic Properties of Fe and Fe3O4 nanowires,” Journal of Applied Physics 99 (2006)
[1.54] J. H. Park, E. Vescovo, H. J. Kim, C. Kwon, R. Ramesh and T. Venkatesan, “Direct Evidence for a Half- Metallic Ferromagnet,” Nature 392, pp. 794-796 (1998)
[1.55] E. J. W. Verwey, “Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures,” Nature 144, pp. 327-328 (1939)
[1.56] M. Matsui, S. Todo and S. Chikazumi, “Magnetization of Low- Temperature Phase of Fe3O4,” Journal of the Physical Society of Japan 43, pp. 47-52 (1977)
[1.57] L. Sun, Y. Hao, C. L. Chien and P. C. Searson, “Tuning the Properties of Magnetic Nanowires,” IBM Journal of Research and Development 49, pp. 79-102 (2005)
[1.58] G. Graf, D. L. J. Vossen, A. Imhof and A. van Blaaderen, “A General Method To Coat Colloidal Particles with SiO2,” Langmuir 19, pp. 6693-6700 (2003)
Chapter 2
[2.1] U. Schwertmann, and R. M. Cornell, “Iron Oxides In the Laboratory,” WILEY- VCH second edition, ISBN 3-527-29669-7 (2000)
Chapter 3
[3.1] R. A. Nyquist, R. O. Kagel, “Infrared Spectra of Inorganic Compound,” Academic Press, New York. (1971)
[3.2] T. G. Devi, M. P. Kannan and B. Hema, “Thermal Decomposition of Cubic Ammonium Perchlorate-The Effect of Barium Doping,” Thermochimica Acta 285, pp. 269- 276 (1996)
[3.3] 神戶博大郎、小澤丈夫編,新版熱分析,講談社科技, ISBN 978-4-06-139748-47034 (1992)
[3.4] S. A. Makhlouf, “Magnetic Properties of Co3O4 Nanoparticles,” Journal of Magnetism and Magnetic Materials 246, pp. 184-190 (2002)
[3.5] L. Liping, S. Xuefei, Q. Xiaoqing, X. Jiaoxing and L. Guangshe, “Nature of Catalytic Activities of CoO Nanocrystals in Thermal Decomposition of Ammonium Perchlorate,” Inorganic Chemistry 47, pp. 8839-8846 (2008)
[3.6] M. Shimokawabe, R. Furuichi, and T. Ishii, “Effect of Metal- Oxide Additives on Thermal- Decomposition of Perchlorates, Oxalates and Hydroxides,” Thermochmica Acta 20, pp. 347-361 (1977)
[3.7] M. T. Chung, L. J. Chou, C. H. Hsieh, Y. L. Chueh, Z. L. Wang, Tasukazu Murakami and Daisuke Shindo, “Magnetic and Electrical Characterization of Half- Metallic Fe3O4 Nanowires,” Advanced Materials 19, pp. 2290-2294 (2007)
[3.8] J. B. Yang, H. Xu, S. X. You, X. D. Zhou, C. S. Wang, W. B. Yelon and W. J. James, “Large Scale Growth and Magnetic Properties of Fe and Fe3O4 nanowires,” Journal of Applied Physics 99, pp. 08Q507 (2006)
[3.9] N. A. Spaldin, “Magnetic Materials: Fundamentals and Device Applications,” Chapter 9, pp. 140-141, Cambridge university press, ISBN 0-521-01658-4 (2003)
[3.10] E. J. W. Verwey, “Electronic conduction of magnetite (Fe3O4) and its transition point at low temperatures,” Nature 144, pp. 327-328 (1939)
[3.11] E. J. W. Verwey, P. W. Haayman, “Electronic Conductivity and Transition Point of Magnetite,” Physica 8, pp. 979-987 (1941)
[3.12] Q. Han, Z. H. Liu, Y. Y. Xu and H. Zhang, “Synthesis and Magnetic Properties of Single-Crystalline Magnetite Nanaowires,” Journal of Crystal Growth 307, pp. 483-489 (2007)
[3.13] U. Schwertmann, and R. M. Cornell, “The Iron Oxides,” WILEY- VCH second edition, ISBN 3-527-30274-3 (2003)
[3.14] M. Stjerndahl, M. Andersson, H. E. Hall, D. M. Pajerowski, M. W. Meisel and R. S. Duran, “Superparamagnetic Fe3O4/SiO2 Nanocomposites: Enabling the Tuning of Both the Iron Oxide Load and the Size of the Nanopoarticles,” Langmuir 24, pp. 3532-3536 (2008)
[3.15] R. A. Nyquist, R. O. Kagel, “Infrared Spectra of Inorganic Compound,” Academic Press, San Diego, CA (1971)
[3.16] U. Schwertmann, and R. M. Cornell (Ed.), “The Iron Oxides,“ WILEY- VCH second edition, ISBN 3-527-30274-3 (2003)