研究生: |
陳祐瑋 Chen,You Wei |
---|---|
論文名稱: |
卷軸式凹版轉印精細導線製程分析 Analysis of Roll-to-Roll Gravure Offset Printing Process for Fine Line Electronic Circuitry |
指導教授: |
陳文華
Chen,Wen Hwa 鄭仙志 Cheng,Hsien Chie |
口試委員: |
劉德騏
陸蘇財 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 70 |
中文關鍵詞: | 凹版轉印 、接觸角 、轉印比例 |
外文關鍵詞: | Gravure offset printing, Contact angle, Transfer ratio |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
台灣為全球注目的半導體及電子科技王國,傳統半導體製程技術之優點為可量產及具有高解析度,但常需昂貴的設備、材料與複雜的程序。此外,傳統半導體電子線路需藉由光罩以定義其輪廓,再透過蝕刻方式製造,因需使用高酸性的化學物質,會造成環保的問題。因此較低成本、簡單及環保的電子產品技術乃為未來發展的目標。
可連續量產、低耗能與生產快速的卷軸式凹版轉印(Roll-to-roll gravure offset printing)技術為其中的重要選項之一,所印製之細微導線厚度較小且寬度亦較窄,可應用於軟硬底材。由於卷軸式凹版轉印之轉墨(Off process)與定墨(Set process)製程需透過轉印布(Blanket)作為銀漿(Silver paste)傳遞之媒介,轉印布為軟性矽膠材質,對於轉墨製程之轉印版與定墨製程之基板的適用性較廣,但銀漿於轉印時易有損耗的情況產生,因此如何提升卷軸式凹版轉印之良率需特予關注。
為了有效提升卷軸式凹版轉印製程之銀漿轉印比例(Transfer ratio),本論文乃以工研院電光所提供之原始銀漿,透過原始銀漿外加溶劑(Solvent)比例之方式,以實驗量測探討轉印製程的物理機制與相關影響印刷之參數,包括藉由接觸角量測儀(Contact angle meter)量測不同溶劑比例銀漿之表面張力,銀漿於轉印版、轉印布與基板常溫及升溫下之接觸角等。
接著,使用微拉力萬用測試儀(Universal micro-testing machine)探討於不同拉伸速率下銀漿於轉墨及定墨製程常溫與升溫時之轉印比例,並分析轉墨及定墨製程參數對於轉印比例的影響,透過更換底材的方式,如各轉印版、轉印布以及基板之選用與搭配,希能藉此找出影響卷軸式凹版轉印製程的重要印刷參數。最後,本論文亦以Surface Evolver軟體探討銀漿於轉墨及定墨製程之轉印比例,並與實驗結果相互驗證。
本論文之研究成果將可供相關研究人員於調整卷軸式凹版轉印製程參數之參考。
Taiwan as a kingdom of semiconductor and electronics technology has attracted the Global attention. The advantages of traditional semiconductor manufacturing process are mass production and high resolution. However, it generally needs expensive equipment and materials and complex procedures. Besides, the electronics circuities of traditional semiconductor were made through the photomask and etching processes. These two processes generally need to use highly acidic chemicals. Thus, it would cause the environmental concerns. Therefore, low-cost, simple, and eco-friendly electronics manufacturing technology would be the target in future development.
The roll-to-roll gravure offset printing technology is one of the important choices due to its exceptional advantages, such as continuous mass production, low energy consumption, and fast production. The technology can yield a much lower line height and thinner line width of fine line circuity. Thus, the fine line circuity made from the manufacturing technology can be used as a soft or hard substrate. Because the off and set processes in the roll-to-roll gravure offset printing technology needs the blanket to be a transfer media between the silver paste. The blanket is made of the soft silicon rubber; therefore, it was widely applied for the gravure in the off process, and for the substrate in the set processes. Nevertheless, the silver paste is apt to lose during the transfer process. Thus, it is very essential to pay an attention to improve the yield of roll-to-roll gravure offset printing technology.
The thesis aims at applying the experimental measurement to investigating the physical mechanism of the printing process by utilizing the silver paste provided from the Opto-Electronics & Systems Laboratories of ITRI, and several parameters, such as surface tension force of silver paste at different solvent content, contact angle of silver paste deposited on different gravure plates, blankets, and substrates.
Then, the universal micro-testing machine was used to explore the transfer ratio during the off and set processes. Their influences of loading rate and temperature were also investigated. In addition, to attain the important parameters on the roll-to-roll gravure offset printing process, some parameters, such as different types of gravure, blanket and substrates, on the off and set processes were further examined. Finally, the Surface Evolver code was also applied to evaluate the transfer ratio during the off and set processes, and the results are compared to those of the experiment.
The results in thesis can provide a reference for relevant researchers on adjusting the parameters of roll-to-roll gravure offset printing process.
[1] Adamson, A. W.; Gast, A. P. (1997): Physical Chemistry of Surface, sixth ed., John Wiley & Sons, New York.
[2] Brakke, K. A. (1996) : Surface Evolver Manual, Version 2.01, The Geometry Center, University of Minnesota.
[3] Bai, S. E.; Shim, J. S.; Lee, C. H.; Bai, C. H.; Shin, K. Y. (2014): Dynamic effect of surface contact angle on liquid transfer in a low speed printing process. Japanese Journal of Applied Physics, Vol. 53, pp. 05HC05(1)-05HC05(6).
[4] Chang, J.; Lee, S.; Lee, K. B.; Lee, S.; Cho, Y. T.; Seo, J.; Lee, S.; Jo, G.; Lee, K. Y.; Kong, H. S.; Kwon, S. (2015): Overlay accuracy on a flexible web with a roll printing process based on a roll-to-roll system. Review of Scientific Instruments, Vol. 86, pp. 055108(1)-055108(8).
[5] Darhuber, A. A.; Miller, S. M.; Troian, S. M.; Wagner S. (2000): Process simulation for contact print microlithography. International Conference on Modeling and Simulation of Microsystems, San Diego, CA, pp. 28-31.
[6] Gunde, R.; Kumar, A.; Lehnert-Batar, S.; Mader, R.; Windhab, E. J. (2001): Measurement of the Surface and Interfacial Tension from Maximum Volume of a Pendant Drop. Journal of Colloid and Interface Science, Vol. 244, pp. 113-122.
[7] Hagberg, J.; Pudas, M.; Leppavuori, S.; Elsey, K.; Logan, A. (2001): Gravure offset printing development for fine line thick film circuits. Microelectronics International, Vol.18, pp. 32-35.
[8] Hrehorova, E.; Rebros, M.; Pekarovicova, A.; Bazuin, B.; Ranganathan, A.; Garner, S.; Merz, G.; Tosch, J.; Boudreau, R. (2011): Gravure Printing of Conductive Inks on Glass Substrates for Applications in Printed Electronics. Journal of display technology, Vol. 7, pp. 318-324.
[9] Kittila, M.; Hagberg, J.; Jakku, E.; Leppavuori, S. (2004): Direct Gravure Printing (DGP) Method for Printing Fine-Line Electrical Circuits on Ceramics. IEEE Transactions on Electronics Packaging Manufacturing, Vol. 27, No. 2, pp. 109-114.
[10] Kang, H. W.; Sung, H. J.; Lee, T. M.; Kim, D. S.; Kim, C. J. (2009): Liquid transfer between two separating plates for micro-gravure-offset printing. Journal of Micromechanics and Microengineering, Vol. 19, pp. 1-9.
[11] Kopola, P.; Aernouts, T.; Guillerez, S.; Jin, H.; Tuomikoski, M.; Maaninen, A.; Hast, J. (2010): High efficient plastic solar cells fabricated with a high-throughput gravure printing method. Solar Energy Materials and Solar Cells, Vol. 94, pp. 1673-1680.
[12] Kim, I.; Kwak, S. W.; Kim, K. S.; Lee, T. M.; Jo, J.; Kim, A. H.; Lee, H. J. (2012): Effect of ink cohesive force on gravure offset printing. Microelectronic Engineering, Vol. 98, pp. 587-589.
[13] Kim, C. H.; Jo, J.; Lee, S. H. (2012): Design of roll-to-roll printing equipment with multiple printing methods for multi-layer printing. Review of Scientific Instruments, Vol. 83, pp. 065001(1)-065001(8).
[14] Leppavuori, S.; Vaananen, J.; Lahti, M.; Uusimaki, A. (1994): A novel thick-film technique gravure offset printing for the realization of fine-line sensor structures.Sensors and Actuators A Physical, Vol. 42, pp. 593-596.
[15] Lahti,M.;Leppavuori,S.;Lantto,V.(1999):Gravure-offset-printing technique for the fabrication of solid films.Applied Surface Science, Vol. 142, pp. 367-370.
[16] Lee, T. M.; Noh, J. H.; Kim, I.; Kim, D. S.; Chun, S. (2010a): Reliability of gravure offset printing under various printing condition. Journal of Applied Physics, Vol. 108, pp. 102802(1)-102802(6).
[17] Lee, T. M.; Noh, J. H.; Kim, C. H.; Jo, J.; Kim, D. S. (2010b): Development of a gravure offset printing system for the printing electrodes of flat panel display.Vol. 518, pp. 3355-3359.
[18] Lee, T. M.; Han, H. S.; Kim, B.; Kwak, S. W.; Noh, J.H.; Kim, I. (2013): Roll offset printing process based on interface separation for fine and smooth patterning. Thin Solid Films, Vol. 548, pp. 566-571.
[19] Lee, A. R.; Kim, I.; Kim, K. Y.; Nam, S. Y.; Choi, Y. M. (2015): Quantitative Measurement of Ink-Blanket Adhesion for Contact Transfer Printing Inks. International Journal of Precision Engineering and Manufacturing, Vol. 16, pp. 151-156.
[20] Noh, J.; Yeom, D.; Lim, C.; Cha, H.; Han, J.; Kim, J.; Park, Y.; Subramanian, V.; Cho, G. (2010): Scalability of Roll-to-Roll Gravure-Printed Electrodes on Plastic Foils. IEEE Transactions on Electronics Packaging Manufacturing, Vol. 33, No. 4, pp. 275-283.
[21] Noh, J. H.; Kim, I.; Park, S. H.; Jo, J.; Kim, D. S.; Lee, T. M. (2013): A study on the enhancement of printing location accuracy in a roll-to-roll gravure offset printing system. International Journal of Advanced Manufacturing Technology, Vol. 68, pp. 1147-1153.
[22] Pudas, M.; Hagberg, J. and Leppävuori S. (2002): The Absorption Ink Transfer Mechanism of Gravure Offset Printing for Electronic Circuitry. IEEE Transactions on Electronics Packaging Manufacturing, Vol. 25, No. 4, pp. 335-343.
[23] Pudas, M.; Hagberg, J. and Leppävuori S. (2004): Printing parameters and ink components affecting ultra-fine-line gravure-offset printing for electronics applications. Journal of the European Ceramic Society, Vol. 24, pp. 2943-2950.
[24] Sung, D.; Vornbrock, A. F.; Subramanian, V. (2010): Scaling and Optimization of Gravure-Printed Silver Nanoparticle Lines for Printed Electronics. IEEE Transaction on Components and Packaging Technologies, Vol. 33, No. 1, pp. 105-114.