簡易檢索 / 詳目顯示

研究生: 劉佳宏
論文名稱: 氧化錳/石墨烯系超電容複合電極材料之製備與性質研究
Preparation and Characterization of Manganese Oxide/Graphene Electrodes for Supercapacitors
指導教授: 馬振基
口試委員: 陳景祥
江金龍
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 208
中文關鍵詞: 石墨烯氧化錳複合電極超級電容器
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在利用CNTs做為奈米插層劑並置入石墨烯(GS)層間藉此避免石墨烯在還原之後產生再堆疊現象,以形成一特殊三維碳結構,接著利用兩種不同的電化學製程來製備氧化錳/石墨烯系的複合電極。由於GS-CNTs具有極為蓬鬆且多孔的3D立體結構,因此氧化錳能均勻的沈積在基材上,大幅提昇氧化錳和電解液之間的接觸面積以及改善其導電特性,進而提升超級電容器的各項電容表現。
    本研究第一部分是利用循環伏安法將氧化錳沈積在GS-CNTs上,製備出氧化錳/石墨烯系的複合電極。從結果可知,GS-CNTs比GS有更為疏鬆的結構,CNTs可有效抑制GS還原後的再堆疊並建立一三維的碳結構。接著利用電化學沈積的技術將錳氧化物沈積在GS-CNTs基材上,從FE-SEM可以看出當a-MnO2沈積在GS-CNTs基材上時,會以花瓣形狀(flowery nanostructure)的奈米微結構沈積在基材之上。
    藉由CV測試可知a-MnO2/GS-CNTs複合電極不管在任何掃描速率之下其比電容值均會最大,最大比電容值在5 mVs-1下為535 F/g;從cycle life測試中可發現複合電極在重複進行1500次充放電之後其比電容值剩餘率仍有97%的保持率;藉由交流電阻抗圖譜可以判斷出此複合電極的電阻高低,從高頻實部的區域中可以看出此複合電極內部電阻並不高且傳遞電子的速度很快;最後從Ragone plot可以得知當複合電極的充放電時間設為100秒時,能得到功率密度為2.6 kW/kg及能量密度為71.3 Wh/kg。總結而論,本部份研究成功利用一特殊3D GS-CNTs結構作為提升氧化錳利用率及導電性之平台,以達到優異之電容表現。
    本研究的第二部份是利用複合電鍍的觀念,將氧化錳和GS-CNTs一同沈積在石墨電極表面形成a-MnO2-GS-CNTs複合電極,並利用FE-SEM鑑定之。從FE-SEM可以得知在低電位所得的複合電極會有相分離的形態產生,而在高電位下電極的形態則會較像純氧化錳電極。
    由linear sweep voltammetry (LSV)的測試可知Mn(OAc)2/GS-CNTs溶液的反應電位為0.6 V,其電位會較Mn(OAc)2溶液的反應電位來的慢;由CV測試結果可知當電位在0.75 V時,其所製備而得的複合電極在任何掃描速率下會有最優異的比電容值(5mVs-1下為437.1 F/g),和其他複合電極(a-MnO2-GS及a-MnO2)作比較時,其比電容值仍最為優異。總結而論,本部份已研究成功發展出一種更為便利的製備方法,不僅大幅縮短了製備氧化錳/石墨烯系複合電極的時間,同樣也提升了複合電極的電容表現。


    This study proposes an effective method to inhibit the aggregation of graphene sheets (GS) by introducing the carbon nanotubes (CNTs) as nanospacers to form the 3D hierarchical graphene sheets-carbon nanotubes (GS-CNTs) structures, and then various electrochemical methods were used to construct the manganese oxide/graphene composite electrodes for supercapacitors.
    Graphene oxide (GO) was prepared from natural graphite through modified Hummer’s method. GO and CNTs were reduced to GS-CNTs by in-situ chemical reduction in the next step. Field emission scanning electron microscopy (FE-SEM) was utilized to investigate the nanostructures of GS-CNTs, which can observe that GS-CNTs show more porous morphology than that of GS. The a-MnO2 was uniformly deposited on GS-CNTs by potentiodynamic deposition, and FE-SEM was utilized to characterize the structures of a-MnO2/GS-CNTs composites. From the observations of FE-SEM images, a-MnO2 uniformly grows onto the whole framework of the 3D porous GS-CNTs composites in the form of flowery nanostructure.
    According to electrochemical analysis, the a-MnO2/GS-CNTs composite electrodes exhibit the highest specific capacitance (535 F/g at 5mVs-1) at all scan rates than that of the pure a-MnO2 and a-MnO2/GS electrodes. And the capacitance retention of a-MnO2/GS-CNTs electrodes can still maintain at 97% after 1500 charge/discharge cycles. The results of electrochemical impedance spectroscopy (EIS) reveal that the a-MnO2/GS-CNTs electrodes not only exhibit low internal resistance but also high speed of electrons transfer. From the Ragone plot, it can be seen that the power density and energy density of the a-MnO2/GS-CNTs electrode can achieve as high as 2.6kW/kg and 71.3 Wh/kg respectively under the charge/discharge time of 100 seconds. In summary, such the 3D hierarchical a-MnO2/GS-CNT with outstanding performances has been realized by an environment-friendly approach, which is a promising electrode material for the next generation of ECs.
    The a-MnO2-GS-CNTs electrode was simultaneously fabricated through one-step anodic composite deposition. The FE-SEM was utilized to characterize their structures. From FE-SEM, the morphologies of a-MnO2-GS-CNTs electrodes fabricated at low potentials show the two phases of individual GS-CNTs and a-MnO2, but the a-MnO2-GS-CNTs electrode fabricated at high potentials exhibit the similar morphology with the pure a-MnO2 electrode.
    From linear sweep voltammetry (LSV), the on-set potential of Mn(OAc)2/GS-CNTs solution is much slower than that of pure Mn(OAc)2 solution. From CV analysis, when the potential is 0.75 V, the a-MnO2-GS-CNTs-0.75 electrode possesses the highest specific capacitance (437.1 F/g at 5mVs-1) at each scan rate in comparison with other electrodes (a-MnO2-GS and a-MnO2). In summary, this work proposed a simple, one-step and efficient approach to simultaneously fabricate 3D hierarchical a-MnO2-GS-CNT with outstanding performances, which also provides a new concept to tailor/design a hierarchical metal oxide/carbon architecture with many different materials for the development of energy storage and conversion systems.

    摘要.....................................................I Abstract................................................III 誌謝.....................................................V 目錄.....................................................VII 圖目錄...................................................XIII 表目錄..................................................XXVII 第一章 緒論 1 1-1 導論 1 1-2 參考文獻 7 第二章 基礎理論與文獻回顧 8 2-1 電化學原理 8 2-1-1 電化學反應系統 8 2-1-2 影響電化學反應系統的變因 11 2-2 超級電容器 13 2-2-1 超級電容器的發展歷史 13 2-2-2 超級電容器簡介 14 2-2-2-1 電雙層電容器(EDLCs) 18 2-2-2-2 擬電容電容器(Pseudocapacitors) 23 2-2-3 超級電容器(Supercapacitors)之量測方式 24 2-3 奈米材料 29 2-4 奈米石墨烯 32 2-4-1 奈米石墨烯基本性質 32 2-4-2 奈米石墨烯的製備方式 37 2-4-2-1 膠帶撕下法 37 2-4-2-2 磊晶成長法 39 2-4-2-3 化學分散法 41 2-4-2-4 碳氫前驅物化學沉積法 42 2-4-2-5 氧化石墨烯片(graphene oxide)-熱還原法 43 2-4-2-6 氧化石墨烯片(graphene oxide)-化學還原法 46 2-4-3 奈米石墨烯的特性 49 2-4-3-1 石墨烯之電性質 50 2-4-3-2 石墨烯之機械性質 55 2-4-3-3 石墨烯之熱性質 57 2-4-3-4 石墨烯之可撓曲特性 58 2-4-3-5 石墨烯之其他性質 58 2-5 過渡金屬氧化物(Transition Metal Oxide, TMO) 59 2-6 石墨烯作為超級電容器之文獻回顧 61 2-7 參考文獻 107 第三章 研究目的與內容 114 3-1 研究目的 114 3-2 研究內容 116 3-3 參考文獻 120 第四章 實驗方法 121 4-1 實驗藥品 121 4-2 實驗儀器設備 124 4-3 實驗流程圖 128 4-4 實驗步驟 129 4-4-1 酸化改質奈米碳管 129 4-4-2 製備氧化石墨烯(Graphene oxide, GO) 130 4-4-3 製備石墨烯電極材料 131 4-4-4 製備石墨烯/奈米碳管電極 132 4-4-5 以循環伏安法製備氧化錳電極 132 4-4-6 以循環伏安法製備氧化錳/石墨烯電極 133 4-4-7 以循環伏安法製備氧化錳/石墨烯/奈米碳管複合電極 133 4-4-8 以定電位法製備氧化錳電極 133 4-4-9 以複合電鍍製備氧化錳/石墨烯電極 134 4-4-10 以複合電鍍製備氧化錳/石墨烯/奈米碳管複合電極 135 4-5 測試方法 136 4-5-1 X光繞射光譜儀(X-ray Diffraction, XRD) 136 4-5-2 拉曼光譜分析(Raman Spectrometer)-碳的sp2及sp3混成鍵結結構分析 137 4-5-3 材料表面各元素組成之化學鍵結型態分析---X光光電子光譜(X-ray photoelectron spectroscopy,XPS) 139 4-5-4 場發射式掃描電子顯微鏡(Field Emission Scanning Electron Microscopy, SEM) 139 4-5-5 循環伏安法(Cyclic Voltammetry) 140 4-5-6 線性掃描伏安法(Linear sweep voltammetry, LSV) 142 4-5-7 交流電阻抗圖譜分析(Electrochemical impedance spectroscopy, EIS) 144 4-5-8 Cycle Life分析 145 4-6 參考文獻 146 第五章 結果與討論 147 5-1 Graphene oxide(GO)及graphene sheet(GS)之性質鑑定 147 5-1-1 GO及GS之XPS(X-ray photoelectron spectroscopy)鑑定 149 5-1-2 GO及GS之拉曼光譜(Raman Spectrum)鑑定 152 5-2 GS-CNTs之表面形態(Morphology)研究 154 5-2-1 GS-CNTs之FE-SEM(Field Emission Scanning Electron Microscopy)鑑定 154 5-3 a-MnO2/GS-CNTs之性質鑑定及表面形態研究 157 5-3-1 a-MnO2/GS-CNTs之XPS鑑定 157 5-3-2 a-MnO2/GS-CNTs之表面型態(Morphology)鑑定 160 5-4 複合電極之電化學分析結果 162 5-4-1 a-MnO2/GS-CNTs複合電極之沈積圈數比較 162 5-4-2 複合電極之循環伏安行為 164 5-4-3 a-MnO2/GS-CNTs複合電極之cycle life測試結果 174 5-4-4 a-MnO2/GS-CNTs複合電極之交流電阻抗圖譜分析 176 5-4-5 複合電極之Ragone plot 178 5-5 結論 182 5-6 參考文獻 187 第六章 以複合電鍍製備電極之結果與討論 188 6-1 a-MnO2-GS-CNTs之性質鑑定及表面形態研究 188 6-1-1 a-MnO2-GS-CNTs之XPS鑑定 188 6-1-2 a-MnO2-GS-CNTs之XRD鑑定 191 6-1-3 a-MnO2-GS-CNTs之表面型態(Morphology)鑑定 192 6-2 複合電極之電化學分析結果 196 6-2-1 Linear Sweep Voltammetry(LSV)分析 196 6-2-2 利用不同電位製備a-MnO2-GS-CNTs複合電極之循環伏安行為比較 198 6-2-3 不同複合電極之循環伏安行為比較 201 6-3 結論 204 第七章 總結論 206

    1. 世界能源統計. http://www.bp.com.
    2. 綠色能源與人類永續發展(上). 新紀元週刊 第145期 2009/10/29.
    3. 能源資訊網. http://emis.erl.itri.org.tw/news/news/upt.asp?p0=3951.
    4. wikiweb. http://en.wikipedia.org/wiki/Supercapacitor.
    5. NEC-Company. http://www.nec-tokin.com/english/.
    6. Novoselov, K.; Geim, A.; Morozov, S.; Jiang, D.; Zhang, Y.; Dubonos, S.; Grigorieva, I.; Firsov, A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666.
    7. Kou, R.; Shao, Y.; Wang, D.; Engelhard, M. H.; Kwak, J. H.; Wang, J.; Viswanathan, V. V.; Wang, C.; Lin, Y.; Wang, Y., Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochemistry Communications 2009, 11 (5), 954-957.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE