研究生: |
陳泰元 Chen, Tai-Yuan |
---|---|
論文名稱: |
外部微波共振腔耦合式表面波電漿源之數值模擬研究 Numerical Simulation Study of External Microwave Cavity Resonator Coupled Surface Wave Plasma Source |
指導教授: |
柳克強
Leou, Keh-Chyang |
口試委員: |
李志浩
Lee, Chih-Hao 張家豪 Chang, Chia-Hao |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 137 |
中文關鍵詞: | 電漿 、數值模擬 、微波電漿 、表面波 |
外文關鍵詞: | plasma, numerical simulation, microwave plasma, surface wave |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
表面波電漿源自1960年代發展以來被發現具有高密度、穩定、大面積均勻分布等優良特性,目前在學界與工業界的研究中主要使用「單功率微波電漿源」,透過不同的耦合設計使得「單功率微波電漿源」在特定的氣體種類、氣壓與功率下可以產生大面積均勻分布的電漿,但製程條件的自由度較為受限。
隨著半導體工業的發展,出現了複雜度較高的電漿製程,「單功率微波電漿源」已逐漸無法在多變的製程條件下依舊維持產生大面積均勻分布電漿的優點。故本研究使用「雙功率微波電漿源」的設計概念,透過兩個微波功率源分別用於控制電漿腔體外圍與腔體中心的電漿密度分布特性,本研究專注在後者,建立其數值模擬模型並命名為「TM010 mode微波共振腔表面波電漿源」,其特點在於微波共振腔位於電漿腔體的外部。本研究建立HFSS電磁數值模擬模型與COMSOL Multiphysics電漿數值模擬模型,模型包含電磁理論、電漿理論以及流體與熱傳理論,探討其電漿特性與微波特性並建立其調頻模擬之流程;實驗上則使用蘭繆爾探針量測微波電漿之電漿特性。
模擬結果顯示,微波透過同軸天線耦合進入TM010 mode微波共振腔後,再由共振腔下方的溝槽天線耦合進入下方電漿腔體,電漿腔體是由介電質窗與電漿區組成,其結構為一介電質表面波波導,最後微波在介電質窗表面形成駐波形式的表面波並激發氣體產生電漿,其電子密度空間分布集中在電漿腔體中心處。在微波吸收功率500 W,氬氣電漿,氣壓30 mTorr時,電子密度約為1018 1/m3,電子溫度約為2~7 eV。此外,從調頻流程之模擬中可以得知,在「固定微波輸入功率」的操作條件下,使用此調頻流程,可以使得微波反射功率下降,且其電漿特性與微波特性皆與「固定微波吸收功率」之模擬結果相近。此結果未來可以應用在使用「可調頻式固態微波功率源」之微波電漿源,並設計分析其微波耦合的特性。
在氫氣電漿的方面,相同操作參數下氫氣電漿之電子密度較氬氣電漿小約一到二個數量級且電子密度空間分布也更加均勻。進一步探討氬氣電漿與氫氣電漿之重粒子產生與消耗之效應,在相同電子密度下,氫氣電漿在重粒子整體產生與消耗反應速率上較氬氣電漿高約一個數量級。
最後量測實驗結果顯示:1.環型共振腔微波電漿源隨微波淨功率上升而電漿密度上升、2.電漿密度遠離腔體中心而下降、3.在微波功率約900 W處有一電子加熱之模式轉換。
Surface wave plasma developed in the 1960s and was found to have excellent characteristics such as high plasma density, stability, and uniform distribution in a large area. At present, "single power microwave plasma source" is mainly used in the research of academia and industry through different couplings. The design enables the "single-power microwave plasma source" to produce a large area uniformly distributed plasma under a specific gas, pressure, and power, but the degree of freedom of the process conditions is relatively limited.
With the development of the semiconductor industry, more complicated plasma processes have developed. The "single-power microwave plasma source" has gradually been unable to maintain the advantages of producing uniformly distributed plasma over a large area under variable process conditions. Therefore, this research uses the design concept of "dual power microwave plasma source". Two microwave power sources are used to control the plasma density distribution characteristics at the periphery of the plasma cavity and the center of the cavity. This research focuses on the latter and establishes numerical simulation model is named "TM010 mode microwave resonant cavity surface wave plasma source", which is characterized in that the microwave cavity is located outside the plasma cavity. This research establishes HFSS electromagnetic numerical simulation model and COMSOL Multiphysics plasma numerical simulation model. The model includes electromagnetic theory, plasma theory, fluid, and heat transfer theory, discusses its plasma characteristics and microwave characteristics, and establishes its frequency tuning simulation process; The Langmuir probe is used to measure the plasma characteristics of microwave plasma.
The simulation results show that the microwave is coupled into the TM010 mode microwave resonant cavity through the coaxial antenna. Then microwave is coupled into the plasma cavity below by the slot antenna which is under the microwave resonant cavity. The plasma cavity is composed of a dielectric window and a plasma area. Its structure is a dielectric surface waveguide. Finally, the microwave forms a standing wave on the surface of the dielectric window and excites the gas to generate plasma. The spatial distribution of electron density is concentrated in the center of the plasma cavity. When the microwave absorption power is 500 W, argon plasma, gas pressure is 30 mTorr, the electron density is about 1018 1/m3, and the electron temperature is about 2-7 eV. In addition, it can be known from the simulation of the frequency tuning process that under the operating conditions of "fixed microwave input power", using this frequency tuning process can reduce the reflected microwave power, and its plasma characteristics and microwave characteristics are the same as those of "fixed microwave absorption power". This result can be applied to microwave plasma sources which using "tunable frequency solid-state microwave power sources" in the future to design and analyze the characteristics of microwave coupling.
In terms of hydrogen plasma, under the same operating parameters, the electron density of hydrogen plasma is about one to two orders of magnitude smaller than that of argon plasma, and the spatial distribution of electron density is more uniform. Further discuss the effect of heavy particle production and consumption of argon plasma and hydrogen plasma. Under the same electron density, hydrogen plasma has a higher total production and consumption reaction rate of heavy particles than argon plasma by about an order of magnitude.
The measurement experiment results show that: 1. The plasma density of the toroidal resonant cavity microwave plasma source increases with the increase of the microwave net power. 2. The plasma density decreases away from the center of the cavity. 3. There is a mode transition of electronic heating when the microwave power is about 900 W.
[1] 葉以凝, "微波氫氣電漿之流體模型數值模擬研究," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2018.
[2] M. Moisan, Z. Zakrzewski, and R. Pantel, "Theory and characteristics of an efficient surface-wave launcher (surfatron) producing long plasma columns, Journal of Physics D-Applied Physics, Article vol. 12, no. 2, pp. 219-&, 1979.
[3] F. Werner, D. Korzec, and J. Engemann, "Slot antenna 2.45 GHz microwave plasma source, Plasma Sources Science & Technology, Article vol. 3, no. 4, pp. 473-481, Nov 1994.
[4] H. Sugai, I. Ghanashev, and M. Nagatsu, "High-density flat plasma production based on surface waves, Plasma Sources Science & Technology, Article vol. 7, no. 2, pp. 192-205, May 1998.
[5] M. Nagatsu, S. Morita, I. Ghanashev, A. Ito, N. Toyoda, and H. Sugai, "Effect of slot antenna structures on production of large-area planar surface wave plasmas excited at 2.45 GHz, Journal of Physics D-Applied Physics, Article vol. 33, no. 10, pp. 1143-1149, May 2000.
[6] M. Kanoh, K. Aoki, T. Yamauchi, and Y. Kataoka, "Microwave-excited large-area plasma source using a slot antenna, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, Article vol. 39, no. 9A, pp. 5292-5296, Sep 2000.
[7] R. D. Tarey, R. K. Jarwal, A. Ganguli, and M. K. Akhtar, "High-density plasma production using a slotted helical antenna at high microwave power, Plasma Sources Science & Technology, Article; Proceedings Paper vol. 6, no. 2, pp. 189-200, May 1997.
[8] M. Lieberman and R. Gottscho, "Physics of Thin Films," Academic, vol. 1, p. 2, 1994.
[9] T. Goto, M. Hirayama, H. Yamauchi, M. Moriguchi, S. Sugawa, and T. Ohmi, "A new microwave-excited plasma etching equipment for separating plasma excited region from etching process region, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, Article; Proceedings Paper vol. 42, no. 4B, pp. 1887-1891, Apr 2003.
[10] C. M. Ferreira, E. Tatarova, J. Henriques, and F. M. Dias, "Modelling of large-scale microwave plasma sources, Journal of Physics D-Applied Physics, Article vol. 42, no. 19, p. 15, Oct 2009, Art. no. 194016.
[11] M. Moisan, Z. Zakrzewski, R. Pantel, and P. Leprince, "A waveguide-based launcher to sustain long plasma columns through the propagation of an electromagnetic surface-wave, Ieee Transactions on Plasma Science, Article vol. 12, no. 3, pp. 203-214, 1984.
[12] M. Moisan, M. Chaker, Z. Zakrzewski, and J. Paraszczak, "The wave-guide surfatron - a high-power surface-wave launcher to sustain large-diameter dense-plasma columns, Journal of Physics E-Scientific Instruments, Article vol. 20, no. 11, pp. 1356-1361, Nov 1987.
[13] M. Moisan and Z. Zakrzewski, "New surface-wave launchers for sustaining plasma columns at submicrowave frequencies (1-300 MHz), Review of Scientific Instruments, Article vol. 58, no. 10, pp. 1895-1900, Oct 1987.
[14] M. Moisan and Z. Zakrzewski, "Plasma sources based on the propagation of electromagnetic surface-waves, Journal of Physics D-Applied Physics, Review vol. 24, no. 7, pp. 1025-1048, Jul 1991.
[15] M. Nagatsu, I. Ghanashev, and H. Sugai, "Production and control of large diameter surface wave plasmas, Plasma Sources Science & Technology, Article vol. 7, no. 2, pp. 230-237, May 1998.
[16] I. P. Ganachev and H. Sugai, "Production and control of planar microwave plasmas for materials processing, Plasma Sources Science & Technology, Article; Proceedings Paper vol. 11, no. 3A, pp. A178-A190, Aug 2002, Art. no. Pii s0963-0252(02)38706-1.
[17] I. Ghanashev, M. Nagatsu, and H. Sugai, "Surface wave eigenmodes in a finite-area plane microwave plasma, Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, Article vol. 36, no. 1A, pp. 337-344, Jan 1997.
[18] I. Ghanashev, M. Nagatsu, G. Xu, and H. Sugai, "Mode jumps and hysteresis in surface-wave sustained microwave discharges, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, Article; Proceedings Paper vol. 36, no. 7B, pp. 4704-4710, Jul 1997.
[19] Y. Yasaka et al., "Production of large-diameter plasma using multi-slotted planar antenna, Plasma Sources Science & Technology, Article vol. 8, no. 4, pp. 530-533, Nov 1999.
[20] 賴柏廷, "溝槽天線耦合式表面波電漿放電數值模擬研究," 碩士, 工程與系統科學系, 國立清華大學, 新竹市, 2020.
[21] R. S. Brokaw, "Predicting transport properties of dilute gases, Industrial & Engineering Chemistry Process Design and Development, Article vol. 8, no. 2, pp. 240-&, 1969.
[22] R. L. Kinder and M. J. Kushner, "Consequences of mode structure on plasma properties in electron cyclotron resonance sources, Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, Article vol. 17, no. 5, pp. 2421-2430, Sep-Oct 1999.
[23] A. O. Brezmes and C. Breitkopf, "Fast and reliable simulations of argon inductively coupled plasma using COMSOL, Vacuum, Article vol. 116, pp. 65-72, Jun 2015.
[24] D. P. Lymberopoulos and D. J. Economou, "Fluid simulations of glow-discharges - effect of metastable atoms in argon, Journal of Applied Physics, Article vol. 73, no. 8, pp. 3668-3679, Apr 1993.
[25] ""https://us.lxcat.net/home/"."
[26] K. Hassouni, T. A. Grotjohn, and A. Gicquel, "Self-consistent microwave field and plasma discharge simulations for a moderate pressure hydrogen discharge reactor," Journal of Applied Physics, vol. 86, no. 1, pp. 134-151, Jul 1999.
[27] M. A. Prelas, G. Popovici, and L. K. Bigelow, Handbook of industrial diamonds and diamond films. Routledge, 2018.
[28] R. Janev, W. Langer, K. Evans, and D. Post, "Elementary Processes in Hydrogen-Helium Plasmas," Nuclear Fusion, vol. 28, no. 3, p. 529, 1988.
[29] ""www.quantemoldb.com."."
[30] M. A. Lieberman and A. J. Lichtenberg, Principles of plasma discharges and materials processing. John Wiley & Sons, 2005.