簡易檢索 / 詳目顯示

研究生: 郁宗勳
Yu, Tzung-Shiun
論文名稱: 以光學技術進行小鼠胃組織三維影像擷取
Optical clearing of mouse gastric tissues for microtome-free, 3D confocal microscopy
指導教授: 湯學成
Tang, Shiue-Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 48
中文關鍵詞: 生物澄清試劑
外文關鍵詞: FocusClear
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以光學影像技術觀察生物與醫學檢體組織,為瞭解生物組織功能與提供醫療判斷的重要工具。但由於生物組織為非勻相物質,其光散射性質,使組織的光穿透度不佳。因此,不論在實驗或者臨床醫學的運用上,樣本組織的切片觀察為主要的顯微影像的取得方式。但是切片會造成組織變形與切割破壞,無法保持完整的樣本結構。為了擺脫切片在光學影像技術上的限制,本實驗以小鼠胃組織為樣本,結合螢光染色與共軛焦顯微鏡技術,配合組織澄清試劑FocusClearTM使胃組織透明,提供了一個不需要使用切片機,即能進行胃組織觀察的方法,建立胃組織的三維顯微影像技術。
    本實驗更進一步的應用所發展之三維胃組織顯微影像技術,觀察非類固醇類消炎藥(NSAIDs)所誘發的小鼠胃潰瘍結構,並與正常的胃組織結構比較,以期突破傳統平面病理切片觀察的限制。


    摘要……………………………………………………………………...……1 目錄……………………………………………………………………………..2 圖目錄………………………………………………………………………..…4 第一部份 文獻回顧 1-1 生物組織觀察的瓶頸…………………………………………………..5 1-2 目前使用生物醫學影像技術…………………………………………..5 1-3 共軛焦顯微鏡………………………………………………….……..8 1-4 生物組織澄清試劑(FocusClearTM)……………………………………..9 1-5 正常小鼠胃結構………………………………………………………11 1-6 胃潰瘍簡介…………………………………………………………...13 1-7 NSAIDs 對於胃潰瘍產生之機制……………………………………14 1. 局部接觸的影響……………………………………………………….14 (1) 離子捕捉效應……………………………………….…………..…..14 (2) 對於上皮細胞電子傳遞鏈之影響………………..…………...……15 (3) 胃黏膜極性的改變………………………………………………….15 2. 前列腺素(prostaglandin)的抑制……………………………………….16 3. 白色血栓(white thrombi)……………………………………………..17 1-8 實驗動機………………………………………………………………19 第二部分 實驗材料和儀器 2-1 實驗材料……………………………………………………………..20 1. 實驗用藥品…………………………………………………………..20 2. 實驗用動物…………………………………………………………..20 2-2 實驗儀器……………………………………………………………..21 第三部分 實驗方法 3-1 FocusClearTM應用於小鼠胃全波長光穿透度及可逆性實驗….…23 3-2 Indomethacin誘發小鼠胃潰瘍實驗………………………….……23 3-3 小鼠胃結構螢光染色及標定物COX-2免疫螢光染色………....…23 第四部分 實驗結果與討論 4-1 小鼠胃可見光穿透度巨觀觀察………………………………..……24 4-2 小鼠胃可見光穿透度定性分析………………………………….….24 4-3 小鼠胃可見光穿透度可逆性定量分析……………………..………25 4-4 共軛焦顯微鏡白光下胃組織微結構………………………………..26 4-5 正常小鼠胃體結構螢光染色……………………………….……….28 4-6 正常小鼠胃&潰瘍小鼠胃巨觀結構比較…………………….……..30 4-7 小鼠胃潰瘍標定物COX-2 enzyme免疫螢光染色…………….....31 第五部分 未來展望 第六部分 參考文獻

    參考文獻

    1. Huang, D., et al., Optical Coherence Tomography. Science, 1991. 254(5035): p. 1178-1181.
    2. Wang, R.K. and J.B. Elder, High resolution optical tomographic imaging of soft biological tissues. Laser Physics, 2002. 12(4): p. 611-616.
    3. Kobayashi, K., et al., High-resolution cross-sectional imaging of the gastrointestinal tract using optical coherence tomography: preliminary results. Gastrointestinal Endoscopy, 1998. 47(6): p. 515-523.
    4. Pitris, C., et al., Feasibility of optical coherence tomography for high-resolution imaging of human gastrointestinal tract malignancies. Journal of Gastroenterology, 2000. 35(2): p. 87-92.
    5. Wang, R.K. and J.B. Elder, Propylene glycol as a contrasting agent for optical coherence tomography to image gastrointestinal tissues. Lasers in Surgery and Medicine, 2002. 30(3): p. 201-208.
    6. Tuchin, V.V., Light scattering study of tissues. Uspekhi Fizicheskikh Nauk, 1997. 167(5): p. 517-539.
    7. Jiao, S.L., G. Yao, and L.H.V. Wang, Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography. Applied Optics, 2000. 39(34): p. 6318-6324.
    8. Wang, R.K.K., et al., Concurrent enhancement of imaging depth and contrast for optical coherence tomography by hyperosmotic agents. Journal of the Optical Society of America B-Optical Physics, 2001. 18(7): p. 948-953.
    9. Xu, X.Q., R.K. Wang, and J.B. Elder, Optical clearing effect on gastric tissues immersed with biocompatible chemical agents investigated by near infrared reflectance spectroscopy. Journal of Physics D-Applied Physics, 2003. 36(14): p. 1707-1713.
    10. Fu, Y.Y., et al., Microtome-Free 3-Dimensional Confocal Imaging Method for Visualization of Mouse Intestine With Subcellular-Level Resolution. Gastroenterology, 2009. 137(2): p. 453-465.
    11. Wallace, J.L., How do NSAIDs cause ulcer disease? Best Practice & Research in Clinical Gastroenterology, 2000. 14(1): p. 147-159.
    12. Wallace, J.L., Prostaglandins, NSAIDs, and gastric mucosal protection: why doesn't the stomach digest itself? Physiol Rev, 2008. 88(4): p. 1547-65.
    13. Harada, N., Y. Hashizume, and H. Hidaka, Proceedings: Effect of fusaric acid and its derivatives on ethanol induced sleep of mice, stress induced gastric ulcer and blood pressure of rats. Jpn J Pharmacol, 1974. 24(0): p. s:77.
    14. Doi, K., et al., Enhanced angiogenesis by gelatin hydrogels incorporating basic fibroblast growth factor in rabbit model of hind limb ischemia. Heart and Vessels, 2007. 22(2): p. 104-108.
    15. Pan, L.R., et al., Roles of nitric oxide in protective effect of berberine in ethanol-induced gastric ulcer mice. Acta Pharmacol Sin, 2005. 26(11): p. 1334-8.
    16. Makino, M., et al., Delayed healing of chronic gastric ulcer after Helicobacter pylori infection in mice. Journal of Pharmacy and Pharmacology, 1998. 50(8): p. 943-8.
    17. Gunawan, E., et al., Influences of Helicobacter pylori on gastric angiogenesis and ulcer healing in mice. J Gastroenterol Hepatol, 2002. 17(9): p. 960-5.
    18. Chen, D., et al., Does Helicobacter pylori infection per se cause gastric cancer or duodenal ulcer? Inadequate evidence in Mongolian gerbils and inbred mice. FEMS Immunol Med Microbiol, 2007. 50(2): p. 184-9.
    19. Hart, F.D., Indomethacin and Gastric Ulcer. British Medical Journal, 1965. 2(5468): p. 1000-&.
    20. Rainsford, K.D., Gastric Ulcerogenicity of Nonsteroidal Antiinflammatory Drugs in Mice with Mucosa Sensitized by Cholinomimetic Treatment. Journal of Pharmacy and Pharmacology, 1987. 39(8): p. 669-672.
    21. Baneljee, D., et al., Healing properties of malabaricone B and malabaricone C, against indomethacin-induced gastric ulceration and mechanism of action. European Journal of Pharmacology, 2008. 578(2-3): p. 300-312.
    22. Warren, J.R., Spiral Bacteria of the Gastric Antrum. Medical Journal of Australia, 1984. 141(7): p. 477-477.
    23. Fromm, D., How do non-steroidal anti-inflammatory drugs affect gastric mucosal defenses? Clin Invest Med, 1987. 10(3): p. 251-8.
    24. Somasundaram, S., et al., The Biochemical Basis of Nonsteroidal Antiinflammatory Drug-Induced Damage to the Gastrointestinal-Tract - a Review and a Hypothesis. Scandinavian Journal of Gastroenterology, 1995. 30(4): p. 289-299.
    25. Mahmud, T., et al., Nonsteroidal antiinflammatory drugs and uncoupling of mitochondrial oxidative phosphorylation. Arthritis Rheum, 1996. 39(12): p. 1998-2003.
    26. Lichtenberger, L.M., The Hydrophobic Barrier Properties of Gastrointestinal Mucus. Annual Review of Physiology, 1995. 57: p. 565-583.
    27. Goddard, P.J., B.A. Hills, and L.M. Lichtenberger, Does Aspirin Damage Canine Gastric-Mucosa by Reducing Its Surface Hydrophobicity. American Journal of Physiology, 1987. 252(3): p. G421-G430.
    28. Lichtenberger, L.M., et al., Effect of Naproxen (Nap) on Gastric-Mucosal Hydrophobicity - Possible Interaction with Surface Phospholipids. Gastroenterology, 1995. 108(4): p. A149-A149.
    29. Lichtenberger, L.M., et al., NSAID injury to the gastrointestinal tract: evidence that NSAIDs interact with phospholipids to weaken the hydrophobic surface barrier and induce the formation of unstable pores in membranes. Journal of Pharmacy and Pharmacology, 2006. 58(11): p. 1421-1428.
    30. Vane, J.R., Inhibition of Prostaglandin Synthesis as a Mechanism of Action for Aspirin-Like Drugs. Nature-New Biology, 1971. 231(25): p. 232-&.
    31. Lanza, F.L., A Review of Gastric-Ulcer and Gastroduodenal Injury in Normal Volunteers Receiving Aspirin and Other Non-Steroidal Anti-Inflammatory Drugs. Scandinavian Journal of Gastroenterology, 1989. 24: p. 24-31.
    32. Whittle, B.J.R., Temporal Relationship between Cyclooxygenase Inhibition, as Measured by Prostacyclin Biosynthesis, and the Gastrointestinal Damage Induced by Indomethacin in the Rat. Gastroenterology, 1981. 80(1): p. 94-98.
    33. Wallace, J.L., et al., Tissue-Selective Inhibition of Prostaglandin Synthesis in Rat by Tepoxalin - Antiinflammatory without Gastropathy. Gastroenterology, 1993. 105(6): p. 1630-1636.
    34. Hogaboam, C.M., et al., Prostaglandins Inhibit Inflammatory Mediator Release from Rat Mast-Cells. Gastroenterology, 1993. 104(1): p. 122-129.
    35. Tibble, J.A., et al., Comparison of the intestinal toxicity of celecoxib, a selective COX-2 inhibitor, and indomethacin in the experimental rat. Scandinavian Journal of Gastroenterology, 2000. 35(8): p. 802-807.
    36. Touhey, S., et al., Structure-activity relationship of indomethacin analogues for MRP-1, COX-1 and COX-2 inhibition: identification of novel chemotherapeutic drug resistance modulators. European Journal of Cancer, 2002. 38(12): p. 1661-1670.
    37. Sato, M., et al., Gastrointestinal blood flow reducted less by COX-2 inhibitor than by indomethacin. (Quantitation of canine small intestinal blood flow by contrast-enhanced ultrasonography). Gastroenterology, 2007. 132(4): p. A356-A356.
    38. Wu, C.Y., et al., Influence of COX-2 and local cytokine expressions in gastric ulcer mucosa by H. pylori and NSAID. Hepato-Gastroenterology, 2006. 53(71): p. 797-803.
    39. Asako, H., et al., Indomethacin-Induced Leukocyte Adhesion in Mesenteric Venules - Role of Lipoxygenase Products. American Journal of Physiology, 1992. 262(5): p. G903-G908.
    40. Santucci, L., et al., Pentoxifylline Prevents Indomethacin-Induced Acute Gastric-Mucosal Damage in Rats - Role of Tumor-Necrosis-Factor-Alpha. Gut, 1994. 35(7): p. 909-915.
    41. Guth, P.H., G. Paulsen, and P. Foroozan, Experimental chronic gastric ulcer due to ischemia in rats. Am J Dig Dis, 1975. 20(9): p. 824-34.
    42. Asako, H., et al., Modulation of Leukocyte Adhesion in Rat Mesenteric Venules by Aspirin and Salicylate. Gastroenterology, 1992. 103(1): p. 146-152.
    43. Wallace, J.L., et al., Role of Endothelial Adhesion Molecules in Nsaid-Induced Gastric-Mucosal Injury. American Journal of Physiology, 1993. 265(5): p. G993-G998.
    44. Mccafferty, D.M., D.N. Granger, and J.L. Wallace, Indomethacin-Induced Gastric Injury and Leukocyte Adherence in Arthritic Versus Healthy Rats. Gastroenterology, 1995. 109(4): p. 1173-1180.
    45. Farrell, J.J., et al., TFF2/SP-deficient mice show decreased gastric proliferation, increased acid secretion, and increased susceptibility to NSAID injury. Journal of Clinical Investigation, 2002. 109(2): p. 193-204.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE