簡易檢索 / 詳目顯示

研究生: 許哲銓
Hsu, Je Chuan
論文名稱: 紫外光對聚甲基丙烯酸甲酯/多壁奈米碳管複合材料的質傳和機械性質的影響
The effects of ultraviolet irradiation on mass transport and mechanical properties of poly(methyl methacrylate) / multiwalled carbon nanotubes composites
指導教授: 李三保
Lee, Sanboh
口試委員: 楊聰仁
薛承輝
洪健龍
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 117
中文關鍵詞: 高分子奈米碳管複合材料質傳
外文關鍵詞: Polymer, Carbon nanotubes, Composites, Mass transport
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 溶劑在高分子的質傳現象可分為三種:(1)第一級擴散、(2)第二級擴散與(3)不正常擴散現象。大多數高分子在溶劑中的質傳行為是屬於結合第一級與第二級擴散的不正常擴散,而Harmon 質傳模型成功地將這類擴散行為以數學形式模擬出來。而我們就以此模型來模擬PMMA多壁碳管複合材料在甲醇中的質傳行為並計算出其擴散係數(D)以及擴散速率(v)。發現PMMA加越多的碳管含量,其質傳的速度越快,代表甲醇越容易進入至有加入碳管的PMMA裡,此現象皆可由D與v觀察出來。
    在照射紫外光後,高分子會因光降解現象而高分子鏈交聯或斷裂,而這些情形都會使得高分子光學以及機械性質劣化。但如果加入奈米碳管形成高分子碳管複合材料後,我們欲觀察其光降解現象是否有改變。再透過質傳的實驗與模擬,發現加入碳管的PMMA複合材料在照射紫外光後,相對於純PMMA在質傳速率上,有著較小的變化幅度,因此判斷紫外光造成高分子光降解的效應可藉由加入碳管而減弱,因此在爾後,我們陸續進行相關的實驗與檢測來證實此現象。


    The interaction between solvent and PMMA had been studied for several decades. The mass transport of amorphous polymer in organic solvent can be classified as three types: (1) Case I transport, (2) Case II transport and (3) anomalous diffusion. Most polymers in solvent are anomalous transport which combines Case I and Case II transport. Harmon et al. excogitated a theoretical model which was applied successfully to PMMA specimen of finite size. We use Harmon model to fit the mass transport of methanol and CNTs/PMMA composites. The characteristic parameters of diffusion coefficient (D) and velocity (v) are calculated from the data of curve fitting, and satisfy the Arrhenius equation. At larger content of CNTs, the composites have higher rate of mass transport, which can be confirmed from the larger value of D and v. And it explains that the solvent methanol is easier to penetrate into the polymers with carbon nanotubes.

    The photochemical defragmentation reactions of poly(methyl methacrylate) (PMMA) by UV-illumination are mainly-classified as main chain scission, complete or incomplete side chain cleavage and direct UV-depolymerization. From the previous studies, it has been confirmed that UV irradiation degrades mechanical and optical properties of PMMA. After adding carbon nanotubes into PMMA becoming nanocomposites, we wanted to investigate the effects of UV irradiation on the CNTs/PMMA nanocomposites. Thus we study the relation between mass transport of PMMA with different contents of CNTs, and expose these CNTs/PMMA composites to UV irradiation. Through observing the change of mass transport, UV irradiation has much impact on the pure PMMA. The rate of mass transport increases rapidly after irradiation. In contrast, the CNTs/PMMA composites exhibit less degree of UV irradiation effect from the slightly change of mass transport.

    Abstract………………………………………………………………….. I Contents………………………………………………………………... III Chapter 1 Introduction…………………………………………………... 1 1.1 Carbon nanotube and CNTs/polymer composites…………………… 1 1.2 Mass transport of poly(methyl methacrylate) in methanol………... 3 1.3 UV irradiation on poly(methyl methacrylate)……………………….. 4 1.4 Motivation and goals………………………………………………… 6 Chapter 2 Experimental……………………………………………….. 9 2.1 Specimen preparation………………………………………………... 9 2.2 Mass transport experiments………………………………………… 11 2.3 UV irradiation………………………………………………………. 11 2.4 DSC measurement………………………………………………….. 11 2.5 AFM measurement…………………………………………………. 12 2.6 Raman spectroscopy measurement…………………………………. 13 2.7 Contact angle measurement………………………………………… 14 2.8 Tensile strength test………………………………………………… 15 Chapter 3 Results and Discussion……………………………………. 16 3.1 Dispersion of CNTs in PMMA……………………………………... 16 3.2 Mass transport of methanol………………………………………. 17 3.3 AFM investigation results………………………………………….. 20 3.4 Glass transition temperature (Tg) results…………………………… 21 3.5 Analysis of Raman spectroscopy…………………………………… 22 3.6 Analysis of contact angle…………………………………………… 24 3.7 Tensile test results…………………………………………………... 25 3.8 SEM results………………………………………………………… 26 Chapter 4 Conclusions…………………………………………………. 28 References…………………………………………………………...…. 30

    1. S. Iijima, "Helical microtubules of graphitic carbon," Nature 354, pp. 56-58 (1991).
    2. X. L. Xie, Y. W. Mai and X. P. Zhou, "Dispersion and alignment of carbon nanotubes in polymer matrix: A review," Material Science and Engineering R 49, pp. 89-112 (2005).
    3. S. J. Tans, A. RM. Verschueren, and C. Dekker, "Room-temperature transistor based on a single carbon nanotube." Nature 393, pp. 49-52 (1998).
    4. R. Martel, T. Schmidt, H. R. Shea, T. Hertel and P. Avouris, "Single-and multi-wall carbon nanotube field-effect transistors," Appl. Phys. Lett. 73, pp. 2447-2449 (1998).
    5. Z. Jin, K. P. Pramoda, G. Xu and S. H. Goh, "Dynamic mechanical behavior of melt-processed multi-walled carbon nanotube/poly(methyl methacrylate) composites," Chem. Phys. Lett. 318, pp. 505-510 (2000).
    6. H. D. Wagner, O. Lourie, Y. Feldman and R. Tenne, "Stressed-induced fragmentation of multiwall carbon nanotubes in a polymer matrix," Appl. Phys. Lett. 72, pp. 188-190 (1998).
    7. S. L. Ruan, P. Gao, X. G. Yang and T. X. Tu, "Toughening high performance ultrahigh molecular weight polyethylene using multiwalled carbon nanotubes," Polymer 44, pp. 5643-5654 (2003).
    8. Peter C. Chen and Douglas Rabin, "Carbon nanotubes optical mirrors," JATIS 1, 014005 (2015).
    9. X. L. Xie, Y. W. Mai and X. P. Zhou, "Dispersion and alignment of carbon nanotubes in polymer matrix: A review," Mater. Sci. Eng., R 49, pp. 89-112 (2005).
    10. D. Qian, E.C. Dickey, R. Andrew and T. Rantell, "Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites," Appl. Phys. Lett. 76, pp. 2868-2870 (2000).
    11. J. P. Salvetat, A. D. Briggs, J. M. Bonard, R. R. Bacsa, A. J. Kulik, T. Stockli, N. A. Burnham and L. Forro, "Elastic and shear moduli of single-walled carbon nanotube ropes," Phys. Rev. Lett. 82, pp. 944-947 (1999).
    12. Z. X. Jin, K. P. Pramoda, S. H. Goh and G. Q. Xu, "Poly(vinylidene fluoride)-assisted melt-blending of multi-walled carbon nanotube /poly(methyl methacrylate) composites," Mater. Res. Bull. 37, pp. 271-278 (2002).
    13. J. Sandler, M. S. P. Shaffer, T. Prasse, W. Bauhofer, K. Schulte and A. H. Windle, "Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties," Polymer 40, pp. 5967-5971 (1999).
    14. F. Xin and L. Li, "Decoration of carbon nanotubes with silver nanoparticles for advanced CNT/polymer nanocomposites," Compos. Part A: Appl. Sci. Manufac. 42, pp. 961-967 (2011).
    15. B. Z. Tang and H. Y. Xu, "Synthesis and optical limiting in copolymers of C-60 and 1-phenyl-1-butyne," Macromolecules 32, pp. 2569-2576 (1999).
    16. M. Cochet, W. K. Maser, A. M. Benito, M. Callejas, M. T. Martínez, J. M. Benoit, J. Schreiberb and O. Chauvetb, "Synthesis of a new polyaniline/nanotube composite: “in-situ” polymerisation and charge transfer through site-selective interaction," Chem. Commun., pp. 1450-1451 (2001).
    17. Q. F. Xiao and X. Zhou, "The study of multiwalled carbon nanotube deposited with conducting polymer for supercapacitor," Electrochem. Acta 48, pp. 575-580 (2003).
    18. Z. Jia, Z. Wang, C. Xu, J. Liang, B. Wei, D. Wu and S. Zhu, "Study on poly(methyl methacrylate)/carbon nanotube composites," Mater. Sci. Eng., A 271, pp. 395-400 (1999).
    19. A. Silberberg, "The role of matrix mechanical stress in swelling, equilibrium and transport through networks," Macromolecules 13, pp. 742-748 (1980).
    20. T. Alfrey, E. F. Gurnee, and W. G. Lloyd, "Diffusion in glassy polymers," J. Polym. Sci., Part C: Polym. Symp. 12, pp. 249-261 (1966).
    21. T. T. Wang, T. K. Kwei and H. L. Frisch, "Diffusion in glassy polymers. III.," J. Polym. Sci. Part A-2(7), pp. 2019-2028 (1969).
    22. T. T. Wang and T. K. Kwei, "Diffusion in glassy polymers. Reexamination of vapor sorption data," Macromolecules 6(6), pp. 919-921 (1973).
    23. H. L. Frisch, T. T. Wang and T. K. Kwei, "Diffusion in glassy polymers. II.," J. Polym. Sci. Part A-2(7), pp. 879-887 (1969).
    24. T. K. Kwei and H. M. Zupko. "Diffusion in glassy polymers. I.," J. Polym. Sci. Part A-2(7), pp. 867-877 (1969).
    25. J. P. Harmon, S. Lee and J. C. M. Li, "Anisotropic methanol transport in PMMA after mechanical deformation," Polymer 29, pp. 1221-1226 (1988).
    26. J. P. Harmon, S. Lee and J. C. M. Li, "Methanol transport in PMMA: The effect of mechanical deformation," J. Polym. Sci. (A) 27, pp. 397 (1987).
    27. S. Kuper and M. Stuke, "UV-excimer-laser ablation of polymethyl methacrylate at 246 nm: Characterization of incubation sites with Fourier transform IR and UV spectroscopy," Appl. Phys. A 49, pp. 211-215 (1989).
    28. C. Wochnowski, S. Metev, G. Sepold, "UV-laser-assisted modification of the optical properties of polymethylmethacrylate," Appl. Surf. Sci. 154, pp. 706-711 (2000).
    29. P. J. Scully, S. Caulder and R. Bartlett, "UV-laser photo-induced refractive index changes in poly methyl methacrylate and plastic optical fibres for application as sensors and devices," The Central Laser Facility Annual Report, pp. 145-147 (1999-2000).
    30. A. A. Miller, E. J. Lawton and J. S. Balwit, "Effect of chemical structure of vinyl polymers on crosslinking and degradation by ionizing radiation," J. Polym. Sci. 14, pp. 503-504 (1954).
    31. B. Ranby and J. F. Rabek, "Photodegradation, photooxidation and photostabilization of polymers – principles and applications," John Wiley & Sons, New York, pp. 153 (1975).
    32. C. Wochnowski, M. A. Shams Eldin and S. Metev, "UV-laser-assisted degradation of poly(methyl methacrylate) ," Polym. Degrad. Stab. 89, pp. 252-264 (2005).
    33. C. B. Lin and S. Lee, "Effect of methanol on optical property of irradiated poly(methyl methacrylate)," J. Appl. Poly. Sci. 44, pp. 2213-2224 (1992).
    34. P. A. O’ Rourke Muisener, L. Clayton, J. D’ Angelo and J. P. Harmon, "Effects of gamma radiation on poly(methyl methacrylate)/single-wall nanotube composites," J. Mater. Res. 17, pp. 2507-2512 (2002).
    35. T. Nguyen, B. Pellegrin, C. Bernard, X. Gu, J. M. Gorham, P. Stutzman, D. Stanley, A. Shapiro, E. Byrd, R. Hettenhouser and J. Chin, "Fate of nanoparticles during life cycle of polymer nanocomposites," J. Phys. Conf. Ser. 304, 012060 (2011).
    36. R. S. McLean and B. B. Sauer, "Tapping-mode AFM studies using phase detection for resolution of nanophases in segmented polyurethanes and other block copolymers," Macromolecules 30, pp. 8314-8317 (1997).
    37. M. J. Cadena, R. Misiego, K. C. Smith, A. Avila, B. Pipes, R. Reifenberger and A. Raman, "Sub-surface imaging of carbon nanotube-polymer composites using dynamic AFM methods," Nanotechnology 24, 135706 (2013).
    38. D. K. Owens and R. C. Wendt, "Estimation of the surface free energy of polymers," J. Appl. Polym. Sci. 13, pp. 1741-1747 (1969).
    39. F. M. Fowkes, "Determination of interfacial tensions, contact angles, and dispersion forces in surface by assuming additivity of intermolecular interactions in surfaces," J. Phys. Chem. 66, pp. 382 (1962).
    40. H. Wang, G. Gu and G. Giu, "Evaluation of surface energy of polymer by contact angle goniometry," J. CENT. SOUTHUNIV. (science and technology) 37, pp. 942-946 (2006).
    41. C. P. Ennis, and I. K. Ralf, "Mechanistical studies on the electron-induced degradation of polymethylmethacrylate and Kapton," Phys. Chem. Chem. Phys. 12, pp. 14902-14915 (2010).
    42. M. A. Pantoja-Castro, J.F. Pérez-Robles, H. González-Rodríguez, Y. Vorobiev-Vasilievitch, H.V. Martínez-Tejada and C. Velasco-Santos, "Synthesis and investigation of PMMA films with homogeneously dispersed multiwalled carbon nanotubes," Mater. Chem. Phys., pp. 458-464 (2013).
    43. R. S. Ruoff, D. Qian, and W. K. Liu, "Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements," C. R. Physique 4, pp. 993-1008 (2003).
    44. F. H. Gojny, M. H. Wichmann, B. Fiedler and K. Schulte, "Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites–a comparative study," Compos. Sci. Technol. 65, pp. 2300-2313 (2005).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE