簡易檢索 / 詳目顯示

研究生: 蔡耀瑩
Tsai, Yao-Ying
論文名稱: 砷化銦量子點光子晶體異質結構雷射
Photonic Crystal Heterostructure Lasers with InAs Quantum Dots
指導教授: 吳孟奇
Wu, Meng-Chyi
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2010
畢業學年度: 99
語文別: 英文
論文頁數: 54
中文關鍵詞: 光子晶體雷射photonic crystal laser
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 光子晶體異質結構共振腔有極高的品質因子以及和低損耗的光子晶體波導結合。在積體光路,這種元件在很多應用上已經吸引了極大的注意。由於量子點的零維的局限特性,使其可以減少臨界電流降低、溫度的相依性,以及較高的微分增益。我們簡單地調變光子晶體波導中間區域洞的數目以及往外移動距離來形成光子晶體異質結構共振腔。在製程上會比較容易製作。我們結合這些好處在砷化銦薄板上製作成光子晶體異質結構雷射。


    Photonic crystal heterostructure cavity has ultra high Q factor and integrates with a low loss photonic crystal waveguide. In photonic integrated circuits, this element has attracted much attention in many application. Owing to the zero-dimensional confinement properties, quantum dots can reduce the threshold current, lower the temperature dependence, and higher differential gain. The photonic crystal heterostructure cavities are formed by simply adjusting numbers of holes in the central region in the waveguide and shifting the holes away from the waveguide by distance. It is easy for fabrication. In the thesis, we integrate these benefits in a photonic crystal heterostructure laser in a InAs membrane.

    Abstract ( in Chinese) i Abstract ( in English) ii Acknowledgement iii List of Figures vi List of Tables xi Chapter 1: Introduction 1 1.1 Development of Photonic Crystals 1 1.2 Photonic Crystal Heterostructure cavity 5 1.3 Advantages of Quantum Dots 6 1.4 Motivation and Overview of Thesis 10 Chapter 2: Basic Theory 11 2.1 Introduction 11 2.2 Plane Wave Expansion Method 11 2.3 Simulation Result of Photonic Crystal Heterostructure Cavities 15 2.3.1 Band structure of photonic crystal waveguide 15 2.3.2 Photonic crystal heterostructure cavities with FDTD 18 Chapter 3: Fabrication 21 3.1 Introduction 21 3.2 Growth of InAs QDs Samples 21 3.3 Fabrication Procedures 22 3.4 Summary 34 Chapter 4: Characterization of the Photonic Crystal Heterostructure Lasers 36 4.1 Introduction 36 4.2 Experiment Results 37 4.2.1 Lasing Characterization of Single Device 38 4.2.2 Lasing Characterization of Different Devices with Different Shift at Fixed Holes 43 4.2.3 Lasing Characterization of Different Devices with Different Pair of Shift-Holes at Fixed Shifting 47 4.3 Summary 50 Chapter 5: Conclusion and Future Work 51 Reference 52

    [1] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, Phys. Rev. Lett., vol. 58, 2059 (1987)
    [2] S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices”, Phys. Rev. Lett., vol. 58, 2486 (1987)
    [3] J. D. Joannopoulos, R. D. Meade, J. N. Winn, “Photonic Crystals”, Princeton University Press, (1995)
    [4] Dae-Sung Song,Se-Heon Kim, Hong-Gyu Park, Chang-Kyu Kim, and Yong-Hee Lee,”Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers” Appl. Phys. Lett. vol. 80, 3901 (2002)
    [5] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. O. O’brien, P. D. Dapkus, and I. Kim,” Two-dimensional photonic band-gap defect mode laser ” Science vol. 284, pp. 1819-1821, (1999)
    [6] S. Y. Lin, J. G. Fleming, D. L. Hetherington, B. K. Smith,R. Biswas, K. M. Ho, M. M. Sigalas, W. Zubrzycki, S. R. Kurtz, and Jim Bur, ” A three-dimensional photonic crystal operating at infrared wavelengths ” Nature., vol. 394, 16 (1998)
    [7] http://www.lostseaopals.com.au/opals/index.asp
    [8] L. P. Biró, Zs. Bálint, K. Kertész, Z. Vértesy, G. I. Márk, Z. E. Horváth, J. Balázs, D. Méhn, I. Kiricsi, V. Lousse, J.-P.Vigneron, “Role of photonic-crystal-type structures in the thermal regulation of a Lycaenid butterfly sister species pair” Phys. Rev. E., vol. 67, 021907, (2003)
    [9] K. Kim et al. “Lattice Constant Effect of Photonic Crystals on the Light Output of Blue Light-Emitting Diodes” IEEE Photon. Technol. Lett., vol. 20, 1455 (2008)
    [10] Yoshihiro Akahane, Takashi Asano, Bong-Shik Song, Susumu Noda “High-Q Photonic Nanocavity in a Two-Dimensional Photonic Crystal” Nature., vol. 425, 944 (2003)
    [11] M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama “Extremely Large Group-Velocity Dispersion of Line-Defect Waveguides in Photonic Crystal Slabs”, Phys. Rev. Lett., vol. 87, 253902 (2001)
    [12] Bong-Shik Song, Takashi Asano, Yoshihiro Akahane, Yoshinori Tanaka, and Susumu Noda “Transmission and reflection characteristics of in-plane hetero-photonic crystals” Appl. Phys. Lett., vol. 85, 4591 (2004)

    [13] Bong-Shik Song, Susumu Noda, Takashi Asano, and Yoshihiro Akahane.
    “Ultra-high-Q photonic double-heterostructure nanocavity” Nature Materials, vol. 4, 207 (2005)
    [14] S. M. Sze, “Semiconductor Devices Physics and Technology”, Wiley.(2002)
    [15] M. B. Stern, P. F. Liao, “Reactive ion etching of GaAs and InP using SiCl4” J. Vac. Sci. Technol. B, vol. 4, 1053 (1983)
    [16] J. W. Lee, J. K. Kim, J. H. Lee, Y. W. Joo, Y. H. Park, and H. S. Noh, “Dry etching of GaAs in high pressure, capacitively coupled BCl3/N2 plasmas” Vac. Sci. Technol. B, vol. 21, 2393 (2003)
    [17] Laurent Jalabert , Pascal Dubreuil, Franck Carcenac, Se’bastien Pinaud,
    Ludovic Salvagnac, Hugues Granier, Chantal Fontaine, “High aspect ratio GaAs nanowires made by ICP-RIE etching using Cl2/N2 chemistry”, Microelectronic Engineering , vol. 85, 1173 (2008)
    [18] Y. W. Chen, B. S. Ooi, G. I. Ng, K. Radhakrishnan, and C. L. Tan, “Dry via hole etching of GaAs using high-density Cl2/Ar plasma” Vac. Sci. Technol. B, vol. 18, 2509 (2000)
    [19] Ralph Williams, “Modern GaAs Processing Methods”, Artech House (1990)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE