簡易檢索 / 詳目顯示

研究生: 王宇航
Wang, Yu-Hang
論文名稱: 太赫茲超穎透鏡的表徵與分析系統
Characterization and Analysis System for Terahertz Metalenses
指導教授: 楊尚樺
YANG, SHANG-HUA
口試委員: 吳孟奇
WU, MENG-CHYI
劉怡君
LIU, YI-CHUN
張祐嘉
CHANG, YOU-CHIA
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 67
中文關鍵詞: 太赫茲超穎表面超穎透鏡成像系統3D列印平面透鏡
外文關鍵詞: Teraherzt, Metasurface, Metalens, Image system, 3D printing, flat lens
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,隨著太赫茲科技的發展愈來愈蓬勃,尤其因為太赫茲波的頻段特性能
    夠實現對材料非離子化與非傷害性的檢驗,太赫茲波也逐漸應用在許多不同的
    研究領域上,例如安全檢測與醫療成像等。其中,透鏡是在這些系統中非常重
    要的元件之一,也因此有許多團隊已經開發出了不同規格的太赫茲透鏡以因應
    各種條件。然而,這種傳統的球面透鏡容易有嚴重的像差,且過於厚重以至於
    難以整合在太赫茲系統當中,因此,結合了超穎材料的太赫茲透鏡,或稱為
    「超穎透鏡」,成為許多團隊的研究方向。超穎透鏡是一種輕薄的平面透鏡,並
    且能經由調整結構達到不同的光學表現。在這篇論文當中,我們架設了一套頻
    域太赫茲超穎透鏡的表徵與分析系統,利用太赫茲連續波發射器作為光源以及
    太赫茲相機作為感測器,能夠即時且直接量測太赫茲超穎透鏡便分析其聚焦表
    現。我們利用該系統量測了窄頻的矽基太赫茲超穎透鏡並建立了成像流程,從
    所量測到的初始數據移除雜訊,並能夠繪製出焦平面的能量分布,且成功分析
    該透鏡的聚焦能力,包含聚焦之光斑大小、聚焦效率、視場尺寸以及傳播方向
    之能量分布。另外,我們也利用 3D 列印技術製作出了適用於不同頻段的太赫茲
    透鏡並測量之,藉此確認該表徵系統的穩定性。


    In recent years, the development of THz technology has become more vigorous.
    Because the frequency band characteristics of THz waves can realize the non-ionization
    and non-destructive testing of materials, THz waves are gradually applied in many
    different research fields, such as security detection and medical imaging. The lens is
    one of the critical components in the systems, and therefore many groups have
    developed THz lenses with different specifications to cope with various conditions.
    However, traditional spherical lenses are prone to severe aberrations and too thick to
    be integrated with THz systems. Therefore, THz lenses combined with metamaterials,
    or called "metalenses," have become the new research direction. A metalens is a thin,
    flat lens that can achieve different optical performances by adjusting its structure. In
    this thesis, we set up a frequency-domain THz metalens characterization and analysis
    system, using a THz continuous wave emitter as a light source and a THz camera as a
    sensor, which can instantly and directly measure and analyze the focusing performance
    of the metalens. We used this system to measure narrow-band silicon-based THz
    metalens and established an imaging process, which removed noise from the initial
    measured data. In addition, we also used 3D printing technology to produce THz lenses
    suitable for different frequency bands and measured them to confirm the stability of the
    characterization system.

    摘要...................................................... i Abstract.................................................. ii Acknowledgments........................................... iii Table of Contents......................................... iiv Lists of Tables........................................... vii Lists of Figures.......................................... viii CHAPTER I ................................................ 1 Introduction...............................................1 1.1 Motivation............................................ 1 1.2 Metamaterial, merasurface and metalens................ 2 1.3 THz characterization system .......................... 5 1.4 THz metalenses characterization ...................... 6 1.5 Thesis Overview....................................... 8 CHAPTER II.................................................10 THz measurement and characterization system................10 2.1 Overview of THz system................................ 10 2.2 Sample characterization in the THz range...............12 2.3 THz lenses characterization........................... 14 2.4 THz metalenses ....................................... 16 CHAPTER III................................................17 Measurement Setup and Imaging Processing ..................17 3.1 The Measurement system................................ 17 3.1.1 Photomixing......................................... 17 3.1.2 THz Camera.......................................... 18 3.2 Image formation....................................... 19 3.2.1 Gaussian noise...................................... 20 3.2.2 Linear noise correction............................. 21 3.2.3 Bad pixel removement.................................23 3.3 Spot analysis and lens characterization................24 3.3.1 Spot diameter .......................................25 3.3.2 Spatial profile .....................................27 3.3.3 Frequency shifting ..................................29 CHAPTER IV.................................................33 Silicon Metalens Characterization .........................33 4.1 Lens Design............................................33 4.2 Lens Fabrication ......................................34 4.3 Measurement and Characterization ......................35 4.3.1 Characterization at 1 THz ...........................36 4.3.2 Field of view (FOV) measurement .....................38 4.3.3 Characterization with frequency shifting.............42 4.4 Conclusion ............................................46 CHAPTER V..................................................47 3D Printed Metalens........................................47 5.1 3D Printing Operation Principle .......................48 5.2 Optical Properties of Printing Material................49 5.3 Design and Fabrication ................................55 5.4 3D printed Metalens characterization ..................56 5.5 3D printed THz flat lens characterization..............58 CHAPTER VI.................................................61 Conclusion and Future Work.................................61 6.1 Conclusion.............................................61 6.2 FutureWork.............................................61 Reference .................................................63

    [1] Mathanker, Sunil K., Paul R. Weckler, and Ning Wang. "Terahertz (THz)
    applications in food and agriculture: A review." Transactions of the ASABE 56.3
    (2013): 1213-1226.
    [2] Suszek, Jaroslaw, et al. "3-D-printed flat optics for THz linear scanners." IEEE
    transactions on Terahertz Science and Technology 5.2 (2015): 314-316.
    [3] Yin, Zhiping, et al. "Tunable dual-band terahertz metalens based on stacked
    graphene metasurfaces." Optics Communications 429 (2018): 41-45.
    [4] Jiang, Xue, et al. "All-dielectric metalens for terahertz wave imaging." Optics
    Express 26.11 (2018): 14132-14142.
    [5] Squires, A. D., Evan Constable, and R. A. Lewis. "3D printing of aspherical
    terahertz lenses and diffraction gratings." 2014 39th International Conference on
    Infrared, Millimeter, and Terahertz waves (IRMMW-THz). IEEE, 2014.
    [6] Suszek, Jaroslaw, et al. "3-D-printed flat optics for THz linear scanners." IEEE
    transactions on Terahertz Science and Technology 5.2 (2015): 314-316.
    [7] Furlan, Walter D., et al. "3D printed diffractive terahertz lenses." Optics letters
    41.8 (2016): 1748-1751.
    [8] Banerji, Sourangsu, and Berardi Sensale-Rodriguez. "3D-printed diffractive
    terahertz optical elements through computational design." Micro-and
    Nanotechnology Sensors, Systems, and Applications XI 10982 (2019): 471-477.
    [9] Angrisani, Leopoldo, et al. "THz measurement systems." New trends and
    developments in metrology (2016): 21-48.
    [10] Popovic Z., Grossman E. N. THz metrology and instrumentation. IEEE Trans.
    Terahertz Sci. Technol. 2011; 1(1): 133–1443
    [11] Neu, Jens, and Charles A. Schmuttenmaer. "Tutorial: An introduction to terahertz
    time domain spectroscopy (THz-TDS)." Journal of Applied Physics 124.23 (2018):
    231101
    [12] Lewis, R. A. "Terahertz imaging and spectroscopy methods and instrumentation."
    (2016): 1
    [13] https://en.wikipedia.org/wiki/Terahertz_time-domain_spectroscopy
    [14] Hejase, Jose A., Pavel R. Paladhi, and Premjeet Prem Chahal. "Terahertz
    characterization of dielectric substrates for component design and nondestructive
    evaluation of packages." IEEE Transactions on Components, Packaging and
    Manufacturing Technology 1.11 (2011): 1685-1694.
    [15] Islam, Md Saiful, et al. "Terahertz optical fibers." Optics express 28.11 (2020):
    16089-16117.
    [16] Mohammad, Nabil, et al. "Broadband imaging with one planar diffractive lens."
    Scientific reports 8.1 (2018): 1-6.
    [17] Engelberg, Jacob, and Uriel Levy. "Standardizing flat lens characterization."
    Nature Photonics 16.3 (2022): 171-173.
    [18] de Araújo, Marcos A., et al. "Measurement of Gaussian laser beam radius using
    the knife-edge technique: improvement on data analysis." Applied optics 48.2
    (2009): 393-396.
    [19] Chiu, Yi, and Jiun-Hung Pan. "Micro knife-edge optical measurement device in a
    silicon-on-insulator substrate." Optics express 15.10 (2007): 6367-6373.
    [20] 林冠博(2021)。光學微影製造之紅外與太赫茲波段超穎透鏡。國立陽明交
    通大學光電工程研究所碩士論文,新竹市.
    [21] Shalaginov, Mikhail Y., et al. "Single-element diffraction-limited fisheye
    metalens." Nano Letters 20.10 (2020): 7429-7437.
    [22] Maas, Ruben, et al. "Experimental realization of an epsilon-near-zero
    metamaterial at visible wavelengths." Nature Photonics 7.11 (2013): 907-912.
    [23] García-Meca, Carlos, et al. "Low-loss multilayered metamaterial exhibiting a
    negative index of refraction at visible wavelengths." Physical review letters 106.6
    (2011): 067402.
    [24] Ou, Jun-Yu, et al. "An electromechanically reconfigurable plasmonic
    metamaterial operating in the near-infrared." Nature nanotechnology 8.4 (2013):
    252-255.
    [25] Burgos, Stanley P., et al. "A single-layer wide-angle negative-index metamaterial
    at visible frequencies." Nature Materials 9.5 (2010): 407-412.
    [26] Ogawa, Shinpei, and Masafumi Kimata. "Metal-insulator-metal-based plasmonic
    metamaterial absorbers at visible and infrared wavelengths: a review." Materials
    11.3 (2018): 458.
    [27] Haxha, Shyqyri, et al. "Metamaterial superlenses operating at visible wavelength
    for imaging applications." Scientific reports 8.1 (2018): 1-15.
    [28] Rockstuhl, Carsten, et al. "Design of an artificial three-dimensional composite
    metamaterial with magnetic resonances in the visible range of the electromagnetic
    spectrum." Physical review letters 99.1 (2007): 017401.
    [29] Huang, Yijia, et al. "A refractory metamaterial absorber for ultra-broadband,
    omnidirectional and polarization-independent absorption in the UV-NIR
    spectrum." Nanoscale 10.17 (2018): 8298-8303.
    [30] Shuvo, Md Mizan Kabir, et al. "Polarization and angular insensitive bendable
    metamaterial absorber for UV to NIR range." Scientific Reports 12.1 (2022): 1-
    15.
    [31] Zhang, Jianfa, Kevin F. MacDonald, and Nikolay I. Zheludev. "Near-infrared
    trapped mode magnetic resonance in an all-dielectric metamaterial." Optics
    express 21.22 (2013): 26721-26728.
    [32] Baqir, Muhammad Abuzar, et al. "Tunable plasmon induced transparency in
    graphene and hyperbolic metamaterial-based structure." IEEE Photonics Journal
    11.4 (2019): 1-10.
    [33] Pu, Mingbo, et al. "Nanoapertures with ordered rotations: symmetry
    transformation and wide-angle flat lensing." Optics Express 25.25 (2017): 31471-
    31477.\
    [34] Busch, S. F., et al. "Optical properties of 3D printable plastics in the THz regime
    and their application for 3D printed THz optics." Journal of Infrared, Millimeter,
    and Terahertz Waves 35.12 (2014): 993-997.
    [35] Wu, Geng-Bo, Kai Fai Chan, and Chi Hou Chan. "3-D printed terahertz lens for
    generation of non-diffractive Bessel beam carrying OAM." 2020 14th European
    Conference on Antennas and Propagation (EuCAP). IEEE, 2020.
    [36] Amenabar, I., F. Lopez, and A. Mendikute. "In introductory review to THz nondestructive testing of composite mater." Journal of Infrared, Millimeter, and
    Terahertz Waves 34.2 (2013): 152-169.
    [37] Tao, Yu Heng, Anthony J. Fitzgerald, and Vincent P. Wallace. "Non-contact, nondestructive testing in various industrial sectors with terahertz technology." Sensors
    20.3 (2020): 712.
    [38] Yu, Liu, et al. "The medical application of terahertz technology in non-invasive
    detection of cells and tissues: opportunities and challenges." RSC advances 9.17
    (2019): 9354-9363.
    [39] Zimdars, David, et al. "Large area terahertz imaging and non-destructive
    evaluation applications." Insight-Non-Destructive Testing and Condition
    Monitoring 48.9 (2006): 537-539.
    [40] Karpowicz, Nicholas, et al. "Non-destructive sub-THz CW imaging." Terahertz
    and Gigahertz Electronics and Photonics IV. Vol. 5727. SPIE, 2005.
    [41] Naftaly, Mira, and Robert E. Miles. "Terahertz time-domain spectroscopy for
    material characterization." Proceedings of the IEEE 95.8 (2007): 1658-1665.
    [42] Barowski, Jan, et al. "A compact measurement setup for in-situ material
    characterization in the lower THz range." 2019 Second International Workshop on
    Mobile Terahertz Systems (IWMTS). IEEE, 2019.
    [43] Hejase, Jose A., Edward J. Rothwell, and Premjeet Chahal. "A multiple angle
    method for THz time-domain material characterization." IEEE Transactions on
    Terahertz Science and Technology 3.5 (2013): 656-665.
    [44] Yin, Zhiping, et al. "Tunable dual-band terahertz metalens based on stacked
    graphene metasurfaces." Optics Communications 429 (2018): 41-45.
    [45] Zhang, Yuhui, et al. "Graphene ribbon based tunable terahertz metalens for dual
    polarization incidences." Optical Materials 97 (2019): 109325.
    [46] Yang, Quanlong, et al. "Broadband and robust metalens with nonlinear phase
    profiles for efficient terahertz wave control." Advanced Optical Materials 5.10
    (2017): 1601084.
    [47] Kargar, Roya, Kasra Rouhi, and Ali Abdolali. "Reprogrammable multifocal THz
    metalens based on metal–insulator transition of VO2-assisted digital metasurface."
    Optics Communications 462 (2020): 125331.
    [48] Zhao, Fen, et al. "Broadband Achromatic Sub‐Diffraction Focusing by an
    Amplitude‐Modulated Terahertz Metalens." Advanced Optical Materials 8.21
    (2020): 2000842.
    [49] Wang, Jicheng, et al. "Terahertz metalens for multifocusing bidirectional
    arrangement in different dimensions." IEEE Photonics Journal 11.1 (2019): 1-11.
    [50] Ding, Pei, et al. "Graphene aperture-based metalens for dynamic focusing of
    terahertz waves." Optics express 26.21 (2018): 28038-28050.
    [51] Zang, Xiaofei, et al. "A multi‐foci metalens with polarization‐rotated focal points."
    Laser & Photonics Reviews 13.12 (2019): 1900182.
    [52] Huang, Zongduo, et al. "Dynamical tuning of terahertz meta-lens assisted by
    graphene." JOSA B 34.9 (2017): 1848-1854.
    [53] Liu, Weiguang, et al. "Graphene-enabled electrically controlled terahertz metalens." Photonics Research 6.7 (2018): 703-708.
    [54] Chen, Hao, et al. "Sub-wavelength tight-focusing of terahertz waves by
    polarization-independent high-numerical-aperture dielectric metalens." Optics
    Express 26.23 (2018): 29817-29825.
    [55] Zhao, Fen, et al. "Terahertz metalens of hyper-dispersion." Photonics Research
    10.4 (2022): 886-895.
    [56] Shen, Zhixiong, et al. "Liquid crystal integrated metalens with tunable chromatic
    aberration." Advanced Photonics 2.3 (2020): 036002.

    QR CODE