簡易檢索 / 詳目顯示

研究生: 詹維倫
Chan, Wei-Lun
論文名稱: 提升毫焦耳級千赫茲重複頻率摻鐿鎢酸釓鉀再生放大器之研究
Improvement of a kilohertz-class millijoule-level Yb:KGW regenerative amplifier
指導教授: 林明緯
Lin, Ming-Wei
藍貫哲
Lan, Kuan-Che
口試委員: 陳明彰
Chen, Ming-Chang
周紹暐
Chou, Shao-Wei
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 74
中文關鍵詞: 再生放大器脈衝延展壓縮器二倍頻式頻率解析光閘
外文關鍵詞: regenerative amplifier, pulse stretcher and compressor, SHG-FROG
相關次數: 點閱:40下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文彙整對重複頻率達千赫茲的摻鐿鎢酸釓鉀再生放大器之研究, 主要工作包含改進現有系統中的脈衝延展器(pulse stretcher)、摻鐿鎢酸釓鉀再生放大器(regenerative amplifier)、脈衝壓縮器(pulse compressor)及搭建一套二倍頻式頻率解析光閘(Second Harmonic Generation Frequency-Resolved Optical Gating, SHG FROG)系統。論文內容涵蓋對於脈衝延展器與脈衝壓縮器的架設程序與檢測方法。對再生放大器性能改進的研究上,則探討脈衝於放大過程中於共振腔內的往返次數、放大器輸出脈衝重複率、輸入種子光源能量以及雷射冷卻系統溫度穩定性對輸出雷射光束的平均功率與輸出脈衝能量的影響。經放大後之雷射實驗結果可得到一脈衝重複率3 kHz,脈衝能量1.02 mJ,頻寬3.2 nm的雷射脈衝。雷射穩定度於十小時長期測試可維持於1%上下。
    為獲得高尖峰功率的輸出雷射,將放大後之雷射導入脈衝壓縮器來實現飛秒級脈衝時寬,壓縮後的脈衝能量為0.77 mJ。脈衝時寬透過二倍頻式頻率解析光閘量測,為670 fs。二倍頻式頻率解析光閘從重建演算法中可得到脈衝的頻譜、頻域相位、時域以及時域相位。
    在脈衝光束聚焦大小為30 μm的情況下,預期輸出之脈衝強度可達到3.25 x 1014 W/cm2。應用中可實現材料加工/表面處理或在空氣中產生雷射絲化(laser filamentation)。未經壓縮的脈衝具有1 mJ的能量,可用作下級雷射放大器的種子光源,使未來能實現一具有數十毫焦耳能量和兆瓦級尖峰功率的放大雷射脈衝。


    This thesis focuses on developing a Yb:KGW regenerative amplifier operating at a kilohertz-class repetition rate. Major tasks include modifications for the pulse stretcher, the regenerative amplifier, and the pulse compressor in the existing system; in addition, a second harmonic generation frequency-resolved optical gating (SHG FROG) was constructed for characterizing the amplified pulses. Procedures for aligning the laser beam in the stretcher and verifying the quality of stretched pulses were examined first. For the improvement of the regenerative amplifier, effects of round-trip number, seed energy, and repetition rate on the average power of output beam and the energy of amplified pulse were investigated, while the temperature stability of the laser system was enhanced with a new cooling setup. Consequently, 1027-nm pulses with an energy of 1.02 mJ, a bandwidth of 3.2 nm, and a repetition rate of 3kHz were acquired from the developed regenerative amplifier. The energy stability of the output pulses can be within 1 % in a ten-hour long measurement.
    To obtained a high laser peak power, the amplified pulses were subsequently introduced into a compressor to realize a femtosecond-level pulse duration. Here, the energy of compressed pulses was measured to be 0.77 mJ and the durations of them were characterized to be 670 fs by a SHG FROG, which provided temporal pulse profile, spectrum, and phases both in temporal and spectral domains of a pulse from a retrieval algorithm. With a focused size of 30 μm, it is expected that an intensity of 3.25 x 1014 W/cm2 can be realized for the output pulse to implement material machining/surface processing or drive laser filamentation in air for downstream applications. The uncompressed pulses, with an energy of 1 mJ, are also suitable for seeding a next-stage power amplifier for realizing pulses with a multi-ten-millijoule energies and a terawatt-level peak power in the future.

    摘要 i Abstract ii 誌謝 iii 目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 第二章 再生放大器運作原理 6 2.1 雷射共振腔基本概要 6 2.2 啁啾脈衝放大 7 2.3 再生放大器 9 第三章 再生放大器實驗設計與結果 11 3.1 單光柵雷射延展器與壓縮器 12 3.1.1 校正光柵 12 3.1.2 脈衝延展器與壓縮器正負色散設計 15 3.1.3 脈衝延展器調整 17 3.1.4 脈衝延展器檢驗 19 3.1.5 脈衝壓縮器調整 20 3.1.6 脈衝壓縮器檢驗 21 3.1.7 脈衝延展器與壓縮器成果 23 3.2 摻鐿鎢酸釓鉀再生放大器 25 3.2.1 增益介質 26 3.2.2 共振腔光路 28 3.2.3 汲發光路、種子光源模態吻合及共振腔偏振 30 3.2.4 放大器自發雷射(free lasing) 32 3.2.5 勃克爾盒開啟時序及參數 38 3.2.6 脈衝選取 41 3.2.8 脈衝放大 42 3.2.9 冷卻系統 53 第四章 二倍頻式頻率解析光閘設計與脈衝時寬壓縮結果 56 4.1二倍頻式頻率解析光閘設計與架設 56 4.1.1 二倍頻式頻率解析光閘架設 57 4.1.2 二倍頻式頻率解析光閘之光譜儀及儀控程式邏輯設計 58 4.2 二倍頻式頻率解析光閘量測結果檢驗 59 4.3脈衝時寬壓縮成果 63 第五章 結論與未來規劃 67 參考文獻 70 附表 72

    [1] D. Strickland and G. Mourou, "Compression of amplified chirped optical pulses," Opt. Commun 55, 447 (1985).
    [2] D. Ress, L. B. Dasilva, R. A. London, J. E. Trebes, S. Mrowka, R. J. Procassini, T. W. Barbee, JR, and D. E. Lehr, "Measurement of laser-plasma electron density with a soft x-ray laser deflectometer," Science 265, 514 (1994).
    [3] A. J. Goers, G. A. Hine, L. Feder, B. Miao, F. Salehi, J. K. Wahlstrand, and H. M. Milchberg, "Multi-MeV electron acceleration by subterawatt laser pulses," Phys. Rev. Lett. 115, 194802 (2015).
    [4] M. Ferray, A. L'Huillier, X. F. Li1, L. A. Lompre, G. Mainfray and C. Manus, "Multiple-harmonic conversion of 1064 nm radiation in rare gases," J. Phys. B. 21, L31 (1988).
    [5] V. E. Kisel, A. S. Rudenkov, A. A. Pavlyuk, A. A. Kovalyov, V. V. Preobrazhenskii, M. A. Putyato, N. N. Rubtsova, B. R. Semyagin, and N. V. Kuleshov, "High-power, efficient, semiconductor saturable absorber mode-locked Yb: KGW bulk laser," Opt. Lett. 40, 2707 (2015).
    [6] H. He, J. Yu, W. Zhu, X. Guo, C. Zhou, & S. Ruan, "A Yb: KGW dual-crystal regenerative amplifier," High Power Laser Sci. Eng. 8, e35 (2020).
    [7] S. Uemura and K. Torizuka, "Sub-40-fs pulses from a diode-pumped Kerr-lens mode-locked Yb-doped yttrium aluminum garnet laser," Jpn. J. Appl. Phys. 50, 010201 (2011).
    [8] S. A. Kuznetsov, V. S. Pivtsov, A. V. Semenko, and S. N. Bagayev. "Highly efficient multimode diode-pumped Yb: KYW laser," J. Phys. 793, 012016 (2017).
    [9] C. Hönninger, F. Morier-Genoud, M. Moser, U. Keller, L. R. Brovelli, and C. Harder. "Efficient and tunable diode-pumped femtosecond Yb: glass lasers," Opt. Lett. 23, 126 (1998).
    [10] G.-H. Kim, J. Yang, B. Lee, B. Jeong, S. Chizhov, E. Sall, V. Yashin, G. Kang, High-power diode-pumped short pulse lasers based on Yb:KGW crystals for industrial applications, in High Energy and Short Pulse Lasers, ed. by R. Viskup (InTech, Rijeka, 2016), p. 2.
    [11] H. Liu, J. Nees, G. Mourou, S. Biswal, G. J. Spühler, U. Keller, and N. V. Kuleshov, "Yb: KGd (WO4) 2 chirped-pulse regenerative amplifiers," Opt. Commun. 203, 315 (2002).
    [12] T. Miura and I. Shinji, "High-energy and high-power Yb: KGW femtosecond regenerative amplifier," Commercial and Biomedical Applications of Ultrafast Lasers. 7203, 121 (2009).
    [13] R. Lv, H. Teng, J. Song, R. Kang, J. Zhu, and Z. Wei, "All-fiber laser seeded femtosecond Yb: KGW solid state regenerative amplifier," Chin. Phys. B. 30, 094206 (2021).
    [14] D. J. Kane and R. Trebino, "Characterization of arbitrary femtosecond pulses using frequency-resolved optical gating," IEEE J. Quantum Electron. 29, 571 (1993).
    [15] 湯哲銘."摻鐿鎢酸釓鉀高功率再生放大器開發," 清華大學光電工程研究所學位論文, (2019).
    [16] P. Sevillano, J. G. Brisset, B. Trophème, and A. Courjaud. "High energy regenerative amplifier based on Yb: CaF2," Solid State Lasers. 10082, 390 (2017).
    [17] G. Heuberger, J. Klepp, J. Guo, Y. Tomita, and M. Fally, "Light diffraction from a phase grating at oblique incidence in the intermediate diffraction regime," Appl. Phys. B. 127, 72 (2021).
    [18] 朱旭新, "高相干性高穩定度十兆瓦雷射系統之建造與應用: 雷射-原子團交互作用與 X 光雷射,"臺灣大學物理研究所博士論文 (2005).
    [19] A.A. Lagatsky, N.V. Kuleshov, and V.P. Mikhailov, "Diode-pumped CW lasing of Yb: KYW and Yb: KGW," Opt. Commun. 165, 71 (1999).

    QR CODE