簡易檢索 / 詳目顯示

研究生: 李建明
LEE CHIEN-MING
論文名稱: 含鎳/鐵金屬之生化擬態模型化合物的研究:鎳/鐵氫化酵素和鐵醯腈水解酵素
Biomimetic Model Studies on Ni/Fe-Containing Metalloenzymes: [NiFe] Hydrogenase and Fe-Containing Nitrile Hydratase
指導教授: 廖文峯
LIAW WEN-FENG
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2005
畢業學年度: 93
語文別: 英文
中文關鍵詞: 生化擬態模型化合物鎳/鐵氫化酵素鐵醯腈水解酵素
外文關鍵詞: Biomimetic Model, Ni/Fe-Containing Metalloenzymes, [NiFe] Hydrogenase, Fe-Containing Nitrile Hydratase
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單核平面四方形結構的化合物 [NiII(SePh)(P(o-C6H3RS)2(o-C6H3RSH))]- (R = H (I-1), SiMe3 (II-la or II-lb)) 具有一個硫醇官能基,硫醇官能基上的質子同時和分子內的硫原子與鎳原子產生交互作用(type I)或質子單獨和鎳原子產生交互作用(type II),可以由化合物[Ni(CO)(SePh)3]- 和化合物P(o-C6H4SH)3/ P(C6H3-3- SiMe3-2-SH)3 分別反應而產生。藉由紅外線光譜學、核磁共振光譜及單晶X光繞射結構解析的研究,證明此特殊分子內作用力的存在 (表4-1)。由氘同位素水分子與硫醇官能基上氫質子的交換實驗,配合紅外線光譜學、核磁共振光譜,亦證明硫醇官能基上氫質子的存在。在氧氣的環境下化合物 [NiII(SePh)(P(o-C6H3- RS)2(o-C6H3RSH))]- (R = H (I-1), SiMe3 (II-la or II-lb))會分別轉換成化合物 [NiIII (SePh)(P(o-C6H3RS)3)]- (R = H (I-2),SiMe3 (II-2))和H2O。化合物II-2可以當作一個好的起始物。在CO環境下,化合物II-2可以轉換成化合物 [NiII(CO) (P(C6- H3-3-SiMe3-2-S)3)]- (II-3)或可以與CH2Cl2反應產生化合物[NiIII(Cl)(P(C6H3-3- SiMe3-2-S)3)]- (II-4)。化合物II-4亦可以當作一個好的起始物去合成 [NiIII(SEt)(P- (C6H3-3-SiMe3-2-S)3)]- (II-5)。此外,化合物[Ni(Cl)(P(C6H3-3-Si-Me3-2-S)2(C6H3-3- SiMe3-2-SH))] (II-6)、[Ni(P(C6H3-3-SiMe3-2-S)(C6H3-3-SiMe3-2-SH)(C6H3-3-SiMe3- 2-□-S))]2 (II-7) 和[NiIII(P(C6H3-3-SiMe3-2-S)2 (C6H3-3-SiMe3-2-□-S))]2 (II-8)可以被合成出來,藉由探討這些化合物的電子結構、幾何結構、光譜特性和反應機制,可以對鎳鐵-氫化酵素的特性做有意義的解釋。
    五配位鐵-硫-硝基化合物[(NO)Fe(S,S-C6H4)2]- (20)和[(NO)Fe(S,S-C6H4)2]2- (III-1)可以成功的被合成出來。具有{Fe(NO)}6電子組態的化合物20可以與氧氣反應產生化合物[(NO)Fe(S,SO2-C6H4)(S,S-C6H4)]- (21)。相反的,化合物III-1與氧氣反應產生化合物20為主要產物、[Fe(S,S-C6H4)2]22- 和 [NO3]- (9%)為副產物。此外,化合物 [(NO)Fe(S,SO2-C6H4)(S,S-C6H4)]2- (III-2) 可由化合物21與[EtS]-反應得到。在氧化反應的比較方面,鍵結電子給予能力較弱的sulfinate配位基的化合物III-2會直接轉換成化合物21。由化合物20-21-III-1-III-2之間的轉變也許可以提供一些訊息,以解釋腈水解酵素在活化態與非活化態之間轉換的機制。


    Mononuclear, distorted square planar [NiII(SePh)(P(o-C6H3RS)2(o-C6H3RSH))]- (R = H (I-1), SiMe3 (II-la or II-lb)) with a S-H proton interacting with both nickel and sulfur atoms (Type I) or an intramolecular [Ni…H-S] interaction (Type II) were prepared by reaction of [Ni(CO)(SePh)3]- and P(o-C6H4SH)3/ P(C6H3-3-SiMe3-2-SH)3, respectively. The presence of intramolecular [Ni…H-S]/[Ni-S…H-S] interac- tions was verified in the solid state by the observation of the IR vS-H band (Table 4-1) and subsequently confirmed by X-ray diffraction study. The exo-thiol proton in I-1, II-la and II-lb was identified as a D2O exchangeable proton from NMR and IR stu- dies. Instead of the ligand-base oxidation to form dinuclear Ni(II) complexes and diphenyl diselenide, oxidation of THF-CH3CN solution of I-1, II-la and II-lb by O2 resulted in the formation of the mononuclear, distorted trigonal bipyramidal [NiIII(Se- Ph)(P(o-C6H3RS)3)]- (R = H (I-2), SiMe3 (II-2)) accompanied by byproduct H2O identified by 1H NMR, individually. Importantly, the reversible transformation from [Ni(III)-S] (II-2) to [Ni(II)…H-S] (II-1a or II-1b) was observed by reaction of II-2 and LiAlH4, followed by the addition of H2O (H+ source). More sterically hindered and stable complex II-2 reacts with exogenous CO to produce [NiII(CO) (P(C6H3-3-SiMe3-2-S)3)]- (II-3). Complex II-2 undergoes dechlorination in CH2Cl2 solution to generate [NiIII(Cl)(P(C6H3-3-SiMe3-2-S)3)]- (II-4) which acts as a precur- sor for synthesis of [NiIII(SEt)(P(C6H3-3-SiMe3-2-S)3)]- (II-5) via ligand metathesis. The EPR spectra of I-2, II-2, II-4 and II-5 exhibiting high rhombicities with three principal g values of 2.30, 2.09 and 2.0 are consonant with Ni(III) with the odd elec- tron in the dz2 orbital. The cyclic voltammetric response of I-2, II-2 and II-5 reveals a reversible NiIII/II process (Table 4-1). When II-1 is dissolved in CH2Cl2 at room temperature, a slow reaction ensues to give the mononuclear [Ni(Cl)(P(C6H3-3-Si- Me3-2-S)2(C6H3-3-SiMe3-2-SH))]- (II-6) after separation of dinuclear neutral [Ni(P- (C6H3-3-SiMe3-2-S)(C6H3-3-SiMe3-2-SH) (C6H3-3-SiMe3-2-□-S))]2 (II-7) by diethyl ether. Two types of crystalline products, orange-red plate (II-6a) and red-brown block (II-6b), were isolated upon precipitation of II-6 with different solvent pairs. Com- pared to the vS-H stretching frequencies among complexes II-1a, II-1b, II-6a, II-6b and II-7, the vS-H stretching frequencies are disturbed by changing terminal donor ligand (Table 4-1). Upon injecting O2 into a THF solution of II-7, the neutral dinu- clear [NiIII(P(C6H3-3-SiMe3-2-S)2 (C6H3-3-SiMe3-2-□-S))]2 (II-8) is isolated and iden- tified by single crystal X-ray diffraction studies. Electrochemical studies reveal that II-8 undergoes one-electron reduction to a [Ni(III)Ni(II)] species that is further re- duced to a [Ni(II)Ni(II)] species. Some of those results are relative to the structure, reactivity, and spectroscopic properties of the nickel site of bimetallic Ni-Fe active site of [NiFe]H2ase.
    The five-coordinated iron-thiolate nitrosyl complexes [(NO)Fe(S,S-C6H4)2]- (20), and [(NO)Fe(S,S-C6H4)2]2- (III-1) have been isolated and structurally characterized. Iron-thiolate nitrosyl complex 20 containing {Fe(NO)}6 core triggers sulfur oxyge- nation by O2 to yield the S-bonded monosulfinate iron species [(NO)Fe(S,SO2- C6H4)(S,S-C6H4)]- (21). In contrast, there is to a certain extent an attack of O2 on the •NO radical of complex III-1 containing {Fe(NO)}7 core leading to the formation of complex 20 accompanied by the minor products, [Fe(S,S-C6H4)2]22- and [NO3]- (9%). Treatment of 1 equiv of [EtS]- and complex 21 in CH3CN-THF yields [(NO)Fe- (S,SO2-C6H4)(S,S-C6H4)]2- (III-2) along with (EtS)2 identified by 1H NMR. Com- pared to III-1, complex III-2 with the less electron-donating sulfinate ligand coordinated to {Fe(NO)}7 core were oxidized by O2 to yield 21. Obviously, the elec- tronic perturbation of the {Fe(NO)}7 core caused by the coordinated sulfinate in III-2 may serve to regulate the reactivity of III-2 toward O2. The iron-sulfinate nitrosyl species with {Fe(NO)}6/7 core exhibit the photolabilization of sulfur-bound [O] moiety under irradiation. The interconversion between complexes 20, 21, III-1 and III-2 (Scheme 4-3) may provide some clues to the transformation pathways between the active and inactive NO-bound forms of Fe-containing nitrile hydratase (Scheme 4-4).

    TABLE OF CONTENTS List of Figures………………………………………………………………..……… iv List of Tables…………………………………………...……………………………vii 中文摘要……………………………………………………………………………viii ABSTRACT……………………………………..………………………………….x CHAPTER 1: Introduction…………………………………………………………….1 Part I: Hydrogenase………………………………………………………………1 [NiFe] Hydrogenase………………………………………………..……….1 [NiFeSe] Hydrogenase……………………………………………..……….9 Model chemistry of [NiFe]H2ase and [NiFeSe]H2ase……………….…….10 Part II: Nitrile Hydratase…….…………………………………...….………….19 Fe-containing Nitrile Hydratase………..……………………………….…19 Model chemistry of Fe-containing NHase……………..……………….…22 CHAPTER 2: Experiments.…………..…………………………………………...…27 General Procedures………………………………………………….…….…….27 Part I: Preparation of I-1 and I-2………………...………………….……….….28 Preparation of [PPN][Ni(SePh)P((o-C6H4S)2(o-C6H4SH))] (I-1)...……….28 D/H Exchange for Reaction of Complex I-1 and D2O..……….……….….28 Reaction of Et3N and Complex I-1….……...………………….………….28 Preparation of Complex [PPN][Ni(SePh)(P(o-C6H4S)3)] (I-2) .……….….29 Part II: Preparation of II-1a, II-1b, II-2, II-3, II-4, II-5, II-6a, II-6b, II-7 and II-8………………………………………………………….……..…….29 Preparation of [PPN][Ni(SePh)P((C6H3-3-SiMe3-2-S)2(C6H3-3-SiMe3-2- SH))] (II-1a) and (II-1b)..…………………………………….……..…….29 D/H Exchange for Reaction of Complex II-1 and D2O……………..…….30 Preparation of [PPN][Ni(SePh)(P(C6H3-3-SiMe3-2-S)3)] (II-2)...…..…….30 Reduction of [PPN][Ni(SePh)(P(C6H3-3-SiMe3-2-S)3)] (II-2) by LiAlH4..31 Preparation of [PPN][Ni(CO)(P(C6H3-3-SiMe3-2-S)3)] (II-3)..…….…….31 Preparation of [PPN][Ni(Cl)(P(C6H3-3-SiMe3-2-S)3)] (II-4)……….…….32 Preparation of [PPN][Ni(SC2H5)(P(C6H3-3-SiMe3-2-S)3)] (II-5).….…….32 Preparation of [PPN][Ni(Cl)P((C6H3-3-SiMe3-2-S)2(C6H3-3-SiMe3-2- SH))] (II-6a) and (II-6b)…………………………………………….……..…….33 Preparation of [NiP((C6H3-3-SiMe3-2-S)2(C6H3-3-SiMe3-2-SH))]2 (II-7)..34 D/H Exchange for Reaction of Complex II-7 and D2O...…….……..…….34 Preparation of [NiP(C6H3-3-SiMe3-2-S)3]2 (II-8).……………….….…….35 Kinetic measurements………………………………..………..…….…….35 Electrochemistry…………………………………………………….…….36 EPR Measurements………………………………………………….…….36 Magnetic Measurements…………………………………………….…….36 Crystallography…………………………………..…….………………….37 Part III: Preparation of III-1 and III-2 and photolysis studies………………….39 Preparation of [PPN]2[(NO)Fe(S,S-C6H4)2] (III-1)...….………………….39 Preparation of [PPN]2[(NO)Fe(S,SO2-C6H4)(S,S-C6H4)] (III-2)………….39 Photolysis of CH2Cl2 solution of [PPN][(NO)Fe(S,S-C6H4)2] (20)……….40 Photolysis of CH2Cl2 solution of [PPN][(NO)Fe(SO2,S-C6H4)(S,S-C6H4)] (21) and PPh3………………………………………………………………40 Photolysis of CH3CN solution of [PPN]2[(NO)Fe(S,S-C6H4)2] (III-1)...…40 Photolysis of CH3CN solution of [PPN]2[(NO)Fe(S,SO2-C6H4)(S,S-C6H4)] (III-2)………………………………………...……………………………40 Reaction of [PPN]2[(NO)Fe(S,S-C6H4)2] (III-1) and O2………………….42 Reaction of [PPN]2[(NO)Fe(S,SO2-C6H4)(S,S-C6H4)] (III-2) and O2…….42 CHAPTER 3: Results and Discussion……………………………………………….45 Part I: Preparation and Characterization of I-1 and I-2………………………...45 Preparation and spectroscopic characterization of complex I-1…………..45 Specific intramolecular [Ni-S•••H-SR]/[Ni•••H-SR] interaction……...46 H/D exchange reaction…………………………………………………….48 Preparation and spectroscopic characterization of complex I-2…………..48 Molecular structures of complexes I-1 and I-2……………………………52 Part II: Preparation of II-1a, II-1b, II-2, II-3, II-4, II-5, II-6a, II-6b, II-7 and II-8………………………………………………………………………55 Preparation and spectroscopic characterization of complex II-1………….55 Specific intramolecular [Ni-S•••H-SR]/[Ni•••H-SR] interaction...……58 H/D exchange reaction…………………………………………………….60 Molecular structures of complexes II-la and II-lb………...……………...61 Reaction of complex II-1 with dioxygen………………………………….62 Reduction of II-2 by LiAlH4……..………………………………………..64 Reaction of complex II-2 with carbon monoxide…………………………65 Dechlorination reaction of dichloromethane by complex II-2………….…68 Reaction of complex II-4 with sodium ethylthiolate……………...………69 Electronic structures of II-2, II-4 and II-5………………………………..72 Electrochemistry…………………………………………………………..76 Molecular structures of complexes II-2, II-3, II-4 and II-5………………77 Reaction of complex II-1 with CH2Cl2……………………………………82 The differences between II-6a and II-6b……………………..…………..83 Molecular structures of complexes II-6a and II-6b………………………87 Neutral dinuclear Ni(II) complex II-7 with exo-thiol…………………….87 Reaction of complex II-1 with [Et3O][BF4]………………………………89 Molecular structures of complexes II-7…………………………………..89 Reaction of complexes II-6 and II-7 toward molecular oxygen………….91 Electrochemistry of complex II-8…………………………………………92 Molecular structures of complexes II-8……………...……………………93 Part III: Preparation and Characterization of 20, 21, III-1 and III-2…………...96 Spectroscopic evidences of sulfinate (M-SO2R) of [PPN][(NO)Fe(S,SO2- C6H4)(S,S-C6H4)] (21)………………………….………………………….96 Photolysis of [PPN][(NO)Fe(S,S-C6H4)2] (20) by irradiation (Hg lamp, Imax= 366 nm)……………………….……………………………………..98 Conversion studies of [PPN][(NO)Fe(S,SO2-C6H4)(S,S-C6H4)] (21) to [PPN][(NO)Fe(S,S-C6H4)2] (20)…………………………………………..99 Preparation and characterization of complex [PPN]2[(NO)Fe(S,S-C6H4)2] (III-1)………………………… …………………………………………100 Oxidation of III-1 by dioxygen…………………………………………..102 Photolysis of III-1 by irradiation (Hg lamp, Imax= 366 nm)………...……104 Preparation and characterization of complex [PPN]2[(NO)Fe(S,SO2-C6H4) (S,S-C6H4)] (III-2)……………………………………………………….104 Oxidation of III-2 by dioxygen…………………………………………..106 Conversion studies of [PPN]2[(NO)Fe(S,SO2-C6H4)(S,S-C6H4)] (III-2) to [PPN]2[(NO)Fe(S,S-C6H4)2] (III-1)………………………..…….………107 Molecular structures of complexes III-1 and III-2………………………108 CHAPTER 4: Conclusion and Comments………………...…………….………..…110 Part I: Complexes I-1, I-2, II-1a, II-1b, II-2, II-3, II-4, II-5, II-6a, II-6b, II-7 and II-8………………………………………..…………………….…110 Part II: Complexes 20, 21, III-1 and III-2…………………...………………..116 REFERENCE…………………………………………..……………….…………..120 APPENDIX………………………………………………………………………....121 List of Figures Figure 1-1. The general role of hydrogenases in metabolism………...…………..…...1 Figure 1-2. (a) The small subunit and the large subunit. Reduced form (b) and oxidized form (c) of the active of [NiFe]H2ase isolated from D. gigas at 2.54 Å resolution, where X could be O2- or OH-…………………………2 Figure 1-3. Proposed electron (a) and proton transfer (b) in large and small subunits..4 Figure 1-4. The active-site structure of D. baculatum [NiFeSe]H2ase with the selected bonddistance(Å)…..………….…………………………………………10 Figure 1-5. The crystal structures of the inactive, NO-bound form of iron-type NHase from Rhodococcus sp. N-771……………………...……………………20 Figure 1-6. The possible pathways for the hydroxylation of nitrile in active site……22 Figure 3-1. (a) The IR KBr solid spectra of I-1, and I-1 under H/D exchange reaction with D2O (dash line). (b) Changes in the 2H NMR spectra observed upon the addition of dry O2 into the solution of I-l-SD. The 2H NMR spectra of I-l-SD and I-l-SD upon exposure to dry O2...………………………..…47 Figure 3-2. (a) The UV/vis spectra of complexes I-l and I-2 in CH3CN. (b) EPR spectraum of I-2 frozen in CH2Cl2. (c) Plots of □eff vs T for I-2…….....49 Figure 3-3. ORTEP drawing and labeling scheme of [Ni(SePh)(P(o-C6H4S)2(o-C6H4 -SH))]- (I-1) anion…………………………………………….………...53 Figure 3-4. ORTEP view of [NiIII(SePh)(P(o-C6H4S)3)]- (I-2) anion………………..54 Figure 3-5. The IR spectra of II-1a, II-1b and II-1a under H/D exchange reaction with D2O……………………………..………………….………………56 Figure 3-6. (a) ORTEP drawing and labeling scheme of [Ni(SePh)(P(C6H3-3-SiMe3- 2-S)2(C6H3-3-SiMe3-2-SH))] (II-1a) anion (b) ORTEP view of II-lb anion…………………………………………………………………….57 Figure 3-7. ORTEP views of II-1a (a) and II-1b (b) in a clear drawing to show the differences. (c) A diagram to show the distance between Ni and S atoms in II-1a (Type I) and II-1b (Type II)………………...…………………59 Figure 3-8. Changes in the 2H NMR spectra observed upon the addition of dry O2 into the solution of II-la-SD. The 2H NMR spectra of II-la-SD and II-la-SD exposure to dry O2………………...…………………………………….61 Figure 3-9. Changes in the UV/vis spectra occurred upon the addition of limited O2 into the solution of II-l. (a) The reaction was monitored for 6 cycles (b) The reaction was monitored after 6 cycles………..…………………….64 Figure 3-10. (a) The IR spectrum of II-3 (b) The reaction between II-2 and CO in CH3CN was monitored by UV/vis spectra……………….……….…….66 Figure 3-11. The dechlorination reaction of II-2 and CH2Cl2 monitored by UV/vis spectra.…………………………………………….……………….…...68 Figure 3-12. The UV/vis spectra (in CH3CN) of II-2, II-3 and II-4, respectively. Only two intense absorptions were labeled for comparison……………...…..70 Figure 3-13.(a) The 1H NMR spectra of [Ni(Cl)(P(C6H3-3-SiMe3-2-S)3)]- (II-4), (b) [Ni(SePh)(P(C6H3-3-SiMe3-2-S)3)]- (II-2) and (c) [Ni(SEt)(P(C6H3- 3-SiMe3-2- S)3)]- (II-4) in CD3CN…………………………...…….…..71 Figure 3-14. Kinetics data (circle) and fits (solid line) for the reactions of (a) II-2 with CH2Cl2 (kobs = (4.78 ± 0.02) × 10-5 s-1, R2 = 0.9990) and (b) II-5 with CH2Cl2 (kobs = (6.01 ± 0.03) × 10-4 s-1, R2 = 0.9990)……………......…73 Figure 3-15. (a) 77 K EPR spectra of [Ni(SePh)(P(C6H3-3-SiMe3-2-S)3)]- (II-2), [Ni(Cl)(P(C6H3-3-SiMe3-2-S)3)]- (II-4)) and [Ni(SEt)(P(C6H3-3- SiMe3-2-S)3)]- (II-5) (b) Plots of □eff vs T for II-2 and for II-4)……....74 Figure 3-16. (a) The cyclic voltammograms of [Ni(SePh)(P(o-C6H4S)3)]- (I-2), Ni(SePh)(P(C6H3-3-SiMe3-2-S)3)]- (II-2) and [Ni(SEt)(P(C6H3-3- SiMe3-2-S)3)]- (II-5). (b) The cyclic voltammograms of [Ni(CO)(P(C6H3 -3-SiMe3-2-S)3)]- (II-3) (dashed line) and [Ni(Cl)(P(C6H3-3-SiMe3-2- S)3)]- (II-4)…………………………………………………...…...........75 Figure 3-17. ORTEP drawing and labeling scheme of [Ni(SePh)(P(C6H3-3-SiMe3-2- S)3)] (II-2) anion……………………………………………………….78 Figure 3-18. ORTEP drawing and labeling scheme of [Ni(CO)(P(C6H3-3-SiMe3-2- S)3)] (II-3) anion…………………………………….………....……....79 Figure 3-19. ORTEP drawing and labeling scheme of [Ni(Cl)(P(C6H3-3-SiMe3-2- S)3)] (II-4) anion……………………………………………..………...……..80 Figure 3-20. ORTEP drawing and labeling scheme of [Ni(SC2H5)(P(C6H3-3-SiMe3-2- S)3)] (II-5) anion…………………………………………….………….81 Figure 3-21. (a) ORTEP drawing and labeling scheme of [Ni(Cl)(P(C6H3-3-SiMe3-2- S)2(C6H3-3-SiMe3-2-SH))] (II-6a) anion (b) ORTEP view of II-6b anion. A diagram to show the distance between Ni and S atoms in II-6a (Type I) and II-6b (Type II)…………………………….………………………..85 Figure 3-22. The IR (KBr solid) spectra of II-6a, II-6b……………………………..86 Figure 3-23. The IR (KBr solid) spectra of II-7 and II-7 under H/D exchange reaction with D2O………………….………………………………….…………88 Figure 3-24. ORTEP drawing and labeling scheme of [Ni(P(C6H3-3-SiMe3-2-S) (C6H3-3-SiMe3-2-SH)(C6H3-3-SiMe3-2-□-S))]2 (II-7) anion….….……90 Figure 3-25. The cyclic voltammograms of [NiIII(P(C6H3-3-SiMe3-2-S)2(C6H3-3- SiMe3-2-□-S))]2 (II-8). The dashed line shows the same condition of II-8, but different scan range (0 to -1.0 V).…………………………..……...93 Figure 3-26. ORTEP drawing and labeling scheme of [Ni(P(C6H3-3-SiMe3-2-S)2 (C6H3-3-SiMe3-2-□-S))]2 (II-8) anion………………….……………....94 Figure 3-27. (a) The UV/vis spectra of complexes 20 and 21. (b) The IR spectra (KBr, pellet) of 20 and 21…………………………………..…....…………....97 Figure 3-28. Changes in the UV/vis spectra occurred upon irradiating the solution of 20…………………………………………………..…………………...98 Figure 3-29. Changes in the UV/vis spectra occurred upon irradiating the solution of 21…………………………………………………...………………......99 Figure 3-30. (a) Comparison of the UV/vis spectra of [PPN][(NO)Fe(S,S-C6H4)2] (20) and [PPN]2[(NO)Fe(S,S-C6H4)2] (III-1). (b) The IR spectrum (KBr, pellet) of III-1……………………..…….………….………………...101 Figure 3-31. Changes in the UV/vis spectra occurred upon the addition of limited O2 into the solution of III-l …………………………………….….….….103 Figure 3-32. Comparison of the UV/vis spectra of III-1 after photolysis by Hg lamp (Imax= 366 nm)……….…………………………………………..…....103 Figure 3-33. The Infrared spectrum of [PPN]2[(NO)Fe(S,SO2-C6H4)(S,S-C6H4)] (III-2) (KBr pellet)…………………………………………..……….……….105 Figure 3-34. Changes in the UV/vis spectra occurred upon the addition of limited O2 into the solution of III-2………………………...…..…….…………..106 Figure 3-35. Change of the UV/vis spectra of III-2 after photolysis by Hg lamp (Imax= 366 nm)…………………………………………………..…………....107 Figure 3-36. ORTEP drawing of the [(NO)Fe(S,S-C6H4)2]2- (III-1) anion…………109 Figure 3-37. ORTEP drawing of the [(NO)Fe(S,SO2-C6H4)(S,S-C6H4)]2- (III-2) anion…………………………………..………………………….…...109 List of Tables Table 1-1. Selected bond distances and angles of the active site of [NiFe]H2ase……..3 Table 1-2. Activities mediated by [NiFe]H2ase………………………………………..5 Table 2-1. The parameter lists of X-band EPR spectra of I-2, II-2, II-4 and II-5…...36 Table 2-2. Crystallographic data of complexes I-1 and I-2…………………………..37 Table 2-3. Crystallographic data of complexes II-2and II-3………………...............38 Table 2-4. Crystallographic data of complexes II-4and II-5………………………...38 Table 2-5. Crystallographic data of complexes II-7and II-8………………………...39 Table 2-6. Crystallographic data of complexes III-1 and III-2……………………...43 Table 3-1. Selected bond distances and angles of [Ni(SePh)(P-(o-C6H4S)2(o-C6H4S- H))]- (I-1)……………………………………………………..…………..53 Table 3-2. Selected bond distances and angles of [NiIII(SePh)(P(o-C6H4S)3)]- (I-2)...54 Table 3-3. Crystallographic data of complexes II-1a and II-1b……………………..56 Table 3-4. Selected bond distances and angles of II-1a and II-1b…………………..59 Table 3-5. Selected bond distances and angles of II-2……………………………….78 Table 3-6. Selected bond distances and angles of II-3……………………………….79 Table 3-7. Selected bond distances and angles of II-4……………………………….80 Table 3-8. Selected bond distances and angles of II-5……………………………….81 Table 3-9. Crystallographic data of complexes II-6a and II-6b……………………..84 Table 3-10. Selected bond distances and angles of II-6a and II-6b…………………85 Table 3-11. Selected bond distances and angles of II-7……………………………...90 Table 3-12. Selected bond distances and angles of II-8……………………………...94 Table 3-13. Comparison of structural parameters of five-coordinated {FeNO}6,7 complexes, inactive NHase and its vNO stretching frequencies………108 Table 4-1. Comparison of structural and spectroscopic parameters in the series of I-l to I-2 and II-1 to II-8………………………………………..………….110

    1. (a) Albracht, S. P. J. Biochim. Biophys. Acta 1994, 1188, 167-204.
    2. (a)Volbeda, A.; Charon, M. H.; Piras, C.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C. Nature 1995, 373, 580-587. (b) Happe, R. P.; Roseboom, W.; Pierik, A. J.; Albracht, S. P. J Nature 1997, 385, 126.
    3. (a) Higuchi, Y.; Yagi, T.; Yasuoka, N. Structure 1997, 5, 1671-1680. (b) Higuchi, Y.; Ogata, H.; Miki, K.; Yasuoka, N.; Yagi, T. Structure 1999, 7, 549-556.
    4. Rousset, M.; Montet, Y.; Guigliarelli, B.; Forget, A.; Asso, M.; Bertrand, P.; Fontecilla-Camps, J. C.; Hatchikian, E. C. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 11625-11630.
    5. Garcin, E.; Vernede, X.; Hatchikian, E. C.; Volbeda, A.; Frey, M.; Fontecilla-Camps, J. C. Structure 1999, 7, 557-566.
    6. (a) Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. Structure 1999, 15, 13-23. (b) Peters, J. W.; Lanzilotta, W. N.; Lemon, B.J.; Seefeldt, L. C. Science 1998, 282, 1853.
    7. (a) De Lacey, A. L.; Hatchikian, E. C.; Volbeda, A.; Frey, M.; Fontecilla-Camps, J. C.; Fernandez, V. M. J. Am. Chem. Soc. 1997, 119, 7181-7189. (b) Volbeda, A.; Garcin, E.; Piras, C.; de Lacey, A.; Fernandez, V. M.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C. J. Am. Chem. Soc. 1996, 118, 12989-12996.
    8. Bertrand, P.; Dole, F.; Asso, M.; Guigliarelli, B. J. Biol. Inorg. Chem. 2000, 5, 682-691.
    9. Maroney, M. J.; Davidson, G.; Allan, C. B.; Figlar, J. Struct. Bond. 1998, 92, 1-65.
    10. Bagley, K. A.; Duin, E. C.; Roseboom, W.; Albracht S. P. J.; Woodruff, W. H. Biochemistry 1995, 34, 5527.
    11. Stein, M.; Lubitz, W. Curr. Opin. Chem. Biol. 2002, 6, 243-249.
    12. Fernandez, V. M.; Hatchikian, E. C.; Cammack, R. Biochim. Biophys. Acta 1986, 832, 69-79.
    13. Coremans, J. M. C. C.; van der Zwaan, G. W.; Albracht, S. P. J. Biochim. Biophys. Acta 1992, 1119, 157-168.
    14. (a) Ogata, H.; Mizoguchi, Y.; Mizuno, N.; Miki, K.; Adachi, S.-I.; Yasuoka, N.; Yagi, T.; Yamauchi, O.; Hirota, S.; Higuchi, Y. J. Am. Chem. Soc. 2002, 124, 11628-11635. (b) Foerster, S.; Stein, M.; Brecht, M.; Ogata, H.; Higuchi, Y.; Lubitz, W. J. Am. Chem. Soc. 2003, 125, 83-93.
    15. Dole, F.; Fournel, A.; Magro, V.; Hatchikian, E. C.; Bertrand, P.; Guigliarelli, B. Biochemistry 1997, 36, 7847-7854.
    16. Stein, M.; Lenthe, E. V.; Baerends, E. J.; Lubitz, W. J. Am. Chem. Soc. 2001, 123, 5839-5840.
    17. (a) Fan, C.; Teixeira, M.; Moura, J.; Moura, I.; Huynh, B. H.; Le Gall, J.; Peck, H. D., Jr.; Hoffman, B. M. J. Am. Chem. Soc. 1991, 113, 20-24. (b) Whitehead, J. P.; Gurbiel, R. J.; Bagyinka, C.; Hoffman, B. M.; Maroney, M. J. J. Am. Chem. Soc. 1993, 115, 5629-5635.
    18. Axley, M.J.; Böck, A.; Stadtman, T.C. Proc. Natl Acad. Sci. USA 1991 88, 8450-8454.
    19. Liaw, W.-F.; Horng, Y.-C.; Ou, D.-S.; Ching, C.-Y.; Lee, G.-H.; Peng, S.-M. J. Am. Chem. Soc. 1997, 119, 9299-9300.
    20. Darensbourg, M.Y.; Lyon, E.J.; Smee, J.J. Coord. Chem. Rev., 2000, 1-29.
    21. Marr, A.C.; Spencer, D.J.E.; Schroder M. Coord. Chem. Rev., 2001, 1055-1074.
    22. Halcrow, M.A.; Christou, G. Chem. Rev. 1994, 94, 2421-2481.
    23. (a) Darensbourg, D.J.; Reibenspies, J.H.; Lai, C.-H.; Lee, W.-Z.; Darensbourg, M.Y. J. Am. Chem. Soc. 1997, 119, 7903-7904. (b) Lai, C.-H.; Lee, W.-Z.; Miller, M.L.; Reibenspies, J.H.; Darensbourg, D.J.; Darensbourg, M.Y. J. Am. Chem. Soc. 1998, 120, 10103-10114.
    24. Hsu, H.-F.; Koch, S. A.; Popescu, C. V.; Munck, E. J. Am. Chem. Soc. 1997, 119, 271-272.
    25. Liaw, W.-F.; Lee, N.-H.; Chen, C.-H.; Lee, C.-M.; Lee, G.-H.; Peng, S.-M. J. Am. Chem. Soc. 2000, 122, 488-494.
    26. Rauchfuss, T. B.; Contakes, S. M.; Hsu, S. C. N.; Reynolds, M. A.; Wilson, S. R. J. Am. Chem. Soc. 2001, 123, 6933-6934.
    27. Stavropoulos, P.; Muetterties, M. C.; Carrie´, M.; Holm, R. H. J. Am. Chem. Soc. 1991, 113, 8485-8492.
    28. Marganian, C. A.; Vazir, H.; Baidya, N.; Olmstead, M. M.; Mascharak, P. K. J. Am. Chem. Soc. 1995, 117, 1584-1594.
    29. Nguyen, D. H.; Hsu, H.-F.; Millar, M.; Koch, S. A.; Achim, C.;Bominaar, E. L.; Mu¨nck, E. J. Am. Chem. Soc. 1996, 118, 8963-8964.
    30. Alvarez, H.M.; Krawiec, M.; Donovan-Merkert, B.T.; Fouzi, M.; Rabinovich, D. Inorg. Chem. 2001, 40, 5736-5737.
    31. Sellmann, D.; Geipel, F.; Lauderbach, F.; Heinemann, F. W. Angew. Chem. Int. Ed., 2002, 41, 632-634.
    32. Lai, C.-H.; Reibenspies, J.H.; Darensbourg, M.Y. Angew. Chem. Int. Ed., 1996, 35, 2390-2394.
    33. Spencer, D.J.E.; Blake, P.A.; Cooke, P.A.; Schroder, M. J. Inorg. Biochem. 1999, 74, 303-310.
    34. Davies, S.C.; Evans, D.J.; Hughes, D.L.; Longhurst, S.; Sanders, J.R. J. Chem. Soc. Chem. Commun. 1995, 1935-1936.
    35. Zimmer, M.; Schulte, G.; Luo, X.-L.; Crabtree, R. H. Angew. Chem. Int. Ed., 1991, 30, 193-194.
    36. Sellmann, D.; Geipel, F.; Moll, M. Angew. Chem. Int. Ed. Engl., 2000, 39, 561-563.
    37. Clegg, W.; Henderson, R.A. Inorg. Chem. 2002, 41, 1128-1135.
    38. Sugiura, Y.; Kuwahara, J.; Nagasawa, T.; Yamada, H. J. Am. Chem. Soc. 1987, 109, 5848-5850.
    39. Brennan, B. A.; Alms, G.; Nelson, M. J.; Durney, L. T.; Scarrow, R. C. J. Am. Chem. Soc. 1996, 118, 9194.
    40. (a) Kobayashi, M.; Shimizu, S. Nat. Biotechnol. 1998, 16, 733-736. (b) Kobayashi, M.; Nagasawa, T.; Yamada, H. Trends Biotechnol. 1992, 10, 402-408.
    41. (a) Noguchi, T. Hoshino, M.; Tsujimura, M.; Odaka, M.; Inoue, Y.; Endo, I. Biochemistry 1996, 35, 16777-16781. (b) Odaka, M.; Fujii, K.; Hoshino, M.; Noguchi, T.; Tsujimura, M.; Nagashima, S.; Yohda, M.; Nagamune, T.; Inoue, Y.; Endo, I. J. Am. Chem. Soc. 1997, 119, 3785-3791.
    42. Huang, W.; Jia, J.; Cummings, J.; Nelson, M.; Schneider, G.; Lindqvist, Y. Structure 1997, 5, 691-699.
    43. Doan, P. E.; Nelson, M. J.; Jin, H.; Hoffman, B.M.; J. Am. Chem. Soc. 1996, 118, 7014-7015.
    44. Nagashima, S.; Nakasako, M.; Dohmae, N.; Tsujimura, M.; Takio, K.; Odaka, M.; Yohda, M.; Kamiya, N.; Endo, I. Nat. Struct. Biol. 1998, 5, 347-351.
    45. (a) Piersma, S. R.; Nojiri, M.; Tsujimura, M.; Noguchi, T.; Odaka, M.; Yohda, M.; Inoue, Y.; Endo, I. J. Inorg. Biochem. 2000, 80, 283-288. (b) Endo, I.; Nojiri, M.; Tsujimura, M.; Nakasako, M.; Nagashima, S.; Yohda, M.; Odaka, M. J. Inorg. Biochem. 2001, 83, 247-253.
    46. Boone, A. J.; Cory, M. G.; Scott, M. J.; Zerner, M. C.; Richards, N. G. J. Inorg. Chem. 2001, 40, 1837-1845.
    47. Brennan, B. A.; Cummings, J. G.; Chase, D. B.; Turner, I. M., Jr.; Nelson, M. J. Biochemistry 1996, 35, 10068-10077.
    48. Noguchi, T.; Honda, J.; Nagamune, T.; Sasabe, H.; Inoue, Y.; Endo, I. FEBS Lett. 1995, 358, 9-12.
    49. (a) Kovacs, J. A. Chem. Rev. 2004, 104, 825-848. (b) Mascharak, P. K. Coord. Chem. Rev. 2002, 225, 210-214.
    50. Noveron, J. C.; Olmstead, M. M.; Mascharak, P. K. Inorg. Chem. 1998, 37, 1138-1139.
    51. Murakami, T.; Nojiri, M.; Nakayama, H.; Odaka, M.; Yohda, M.; Dohmae, N.; Takio, K.; Nagamune, T.; Endo, I. Protein Science, 2000, 9, 1024-1030.
    52. Tyler, L. A.; Noveron, J. C.; Olmstead, M. M.; Mascharak, P. K. Inorg. Chem. 1999, 38, 616-617.
    53. (a) Culotta, E.; Koshland, D. E. Science 1992, 258, 1862-1865. (b) Traylor, T. G.; Sharma, V. S. Biochemistry 1992, 31, 2847-2849.
    54. Schweitzer, D.; Ellison, J. J.; Shoner, S. C.; Lovell, S.; Kovacs, J. A. J. Am. Chem. Soc. 1998, 120, 10996-10997.
    55. Patra, A. K.; Afshar, R.; Olmstead, M. M.; Mascharak, P. K. Angwe. Chem. Int. Ed. 2002, 41, 2512-2515.
    56. Shearer, J.; Jackson, H. L.; Schweitzer, D.; Rittenberg, D. K.; Leavy, T. M.; Kaminsky, W.; Scarrow, R. C.; Kovacs, J. A. J. Am. Chem. Soc. 2002, 124, 11417-11428.
    57. Lee, C.-M.; Hsieh, C.-H.; Dutta, A.; Lee, G.-H.; Liaw, W.-F. J. Am. Chem. Soc. 2003, 125, 11492-11493.
    58. Enemark, J. H.; Feltham, R. D. Coord. Chem. Rev. 1974, 13, 339-406.
    59. Block, E.; Ofori-Okai, G.; Zubieta, J. J. Am. Chem. Soc. 1989, 111, 2327-2329.
    60. Albano, V. G.; Araneo, A.; Bellon, P. L.; Ciani, G.; Manassero, M. J. Organomet. Chem. 1974, 67, 413.
    61. Franolic, J. D.; Wang, W. Y.; Millar, M. J. Am. Chem. Soc. 1992, 114, 6587-6588.
    62. Sheldrick, G. M. SADABS, Siemens Area Detector Absorption Correction Program; University of Go¨ttingen: Germany, 1996.
    63. Sheldrick, G. M. SHELXTL, Program for Crystal Structure Determination; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1994.
    64. Darensbourg, M. Y.; Liaw, W.-F.; Riordan, C. G. J. Am. Chem. Soc. 1989, 111, 8051-8052.
    65. Jessop, P. G.; Morris, R. H. Inorg. Chem. 1993, 32, 2236-2237.
    66. Grove, D. M.; van Koten, F.; Zoet, R. J. Am. Chem. Soc. 1983, 105, 1379-1380.
    67. (a) Stein, C. A.; Taube, H. Inorg. Chem. 1979, 18, 2212-2216. (b)Branscombe, N. D. J.; Atkins, A. J.; Marin-Becerra, A.; McInnes, E. J. L.;Mabbs, F. E.; McMaster, J.; Schröder, M. Chem. Commun. 2003, 1098-1099. (c) Clark, K. A.; George, A.; Brett, T. J.; Ross, C. R.; Shoemaker,R. K. Inorg. Chem. 2000, 39, 2252-2253.
    68. Signor, L.; Knuppe, C.; Hug, R.; Schweizer, B.; Pfaltz, A.; Jaun, B. Chem. Eur. J. 2000, 6, 3508-3516.
    69. Clark, K. A.; George, T. A.; Brett, T. J.; Ross, C. R. II, Shoemaker, R. K. Inorg. Chem. 2000, 32, 2252-2253.
    70. Grapperhaus, C. A.; Poturovic, S.; Mashuta, M. S. Inorg. Chem. 2002, 41, 4309-4311.
    71. Farmer, P. J.; Reibenspies, J. H.; Lindahl, P. A.; Darensbourg, M.Y. J. Am. Chem. Soc. 1993, 115, 4665-4674.
    72. Wang, Q.; Marr, A. C.; Blake, A. J.; Wilson, C.; Schröder, M. Chem. Commun. 2003, 2776-2777 and references therein.
    73. Lucchese, B.; Humphreys, K. J.; Lee, D.-H.; Incarvito, C. D.; Sommer, R. D.; Rheingold, A. L.; Karlin, K. D. Inorg. Chem. 2004, 43, 5987-5998.
    74. Rosenfield, S. G.; Armstrong, W. H.; Mascharak, P. K. Inorg. Chem. 1986, 25, 3014-3018.
    75. Hsu, H.-F.; Chu, W.-C.; Hung, C.-H.; Liao J.-H. Inorg. Chem. 2003, 42, 7369-7371.
    76. (a) de Vries, N.; Davison, A.; Jones, A. G. Inorg. Chim. Acta 1989, 165, 9. (b) de Vries, N.; Cook, J.; Jones, A. G.; Davison, A. Inorg. Chem. 1991, 30, 2662-2665.
    77. Franolic, J. D.; Millar, M.; Koch, S. A. Inorg. Chem. 1995, 34, 1981-1982.
    78. Hsu, H.-F.; Koch, S. A.; Popescu, C. V.; Mu¨nck, E. J. Am. Chem. Soc. 1997, 119, 8371-8372.
    79. Dilworth, J. R.; Hutson,A. J.; Lewis, J. S.; Miller, J. R.; Zheng, Y.; Chen, Q.; Zubieta, J. J.Chem. Soc., Dalton Trans. 1996, 1093.
    80. Grapperhaus, C. A.; Darensbourg, M. Y. Acc. Chem. Res. 1998, 31, 451-459 and references therein.
    81. (a) Herebian, D.; Bothe, E.; Bill, E.; Weyhermuller, T.; Wieghardt, K. J. Am. Chem. Soc. 2001, 123, 10012-10023. (b) Sun, X.; Chun, H.; Hildenbrand, K.; Bothe, E.; Weyhermuller, T.; Neese, F.; Wieghardt, K. Inorg. Chem. 2002, 41, 4295-4303. (c) Ray, K.; Bill, E.; Weyhermüller, T.; Wieghardt, K. J. Am. Chem. Soc. 2005, 127, 5641-5654.
    82. McCleverty, J. A. Chem. Rev. 2004, 104, 403-418 and references therein.
    83. Ricardo, G. S.; Craig, A. G.; Eberhard, B.; Thomas, W.; Frank, N.; Karl W. J. Am. Chem. Soc. 2004, 126, 5138-5153.
    84. Greene, S. N.; Chang, C. H.; Richards, N. G. J. Chem. Commun. 2002, 2386-2387.
    85. Scarrow, R. C.; Stickler, B. S.; Ellison, J. J.; Shoner, S. C.; Kovacs, J. A.; Cummings, J. C.; Nelson, M. J. J. Am. Chem. Soc. 1998, 120, 9237-9245.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE