研究生: |
李建明 LEE CHIEN-MING |
---|---|
論文名稱: |
含鎳/鐵金屬之生化擬態模型化合物的研究:鎳/鐵氫化酵素和鐵醯腈水解酵素 Biomimetic Model Studies on Ni/Fe-Containing Metalloenzymes: [NiFe] Hydrogenase and Fe-Containing Nitrile Hydratase |
指導教授: |
廖文峯
LIAW WEN-FENG |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
中文關鍵詞: | 生化擬態模型化合物 、鎳/鐵氫化酵素 、鐵醯腈水解酵素 |
外文關鍵詞: | Biomimetic Model, Ni/Fe-Containing Metalloenzymes, [NiFe] Hydrogenase, Fe-Containing Nitrile Hydratase |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
單核平面四方形結構的化合物 [NiII(SePh)(P(o-C6H3RS)2(o-C6H3RSH))]- (R = H (I-1), SiMe3 (II-la or II-lb)) 具有一個硫醇官能基,硫醇官能基上的質子同時和分子內的硫原子與鎳原子產生交互作用(type I)或質子單獨和鎳原子產生交互作用(type II),可以由化合物[Ni(CO)(SePh)3]- 和化合物P(o-C6H4SH)3/ P(C6H3-3- SiMe3-2-SH)3 分別反應而產生。藉由紅外線光譜學、核磁共振光譜及單晶X光繞射結構解析的研究,證明此特殊分子內作用力的存在 (表4-1)。由氘同位素水分子與硫醇官能基上氫質子的交換實驗,配合紅外線光譜學、核磁共振光譜,亦證明硫醇官能基上氫質子的存在。在氧氣的環境下化合物 [NiII(SePh)(P(o-C6H3- RS)2(o-C6H3RSH))]- (R = H (I-1), SiMe3 (II-la or II-lb))會分別轉換成化合物 [NiIII (SePh)(P(o-C6H3RS)3)]- (R = H (I-2),SiMe3 (II-2))和H2O。化合物II-2可以當作一個好的起始物。在CO環境下,化合物II-2可以轉換成化合物 [NiII(CO) (P(C6- H3-3-SiMe3-2-S)3)]- (II-3)或可以與CH2Cl2反應產生化合物[NiIII(Cl)(P(C6H3-3- SiMe3-2-S)3)]- (II-4)。化合物II-4亦可以當作一個好的起始物去合成 [NiIII(SEt)(P- (C6H3-3-SiMe3-2-S)3)]- (II-5)。此外,化合物[Ni(Cl)(P(C6H3-3-Si-Me3-2-S)2(C6H3-3- SiMe3-2-SH))] (II-6)、[Ni(P(C6H3-3-SiMe3-2-S)(C6H3-3-SiMe3-2-SH)(C6H3-3-SiMe3- 2-□-S))]2 (II-7) 和[NiIII(P(C6H3-3-SiMe3-2-S)2 (C6H3-3-SiMe3-2-□-S))]2 (II-8)可以被合成出來,藉由探討這些化合物的電子結構、幾何結構、光譜特性和反應機制,可以對鎳鐵-氫化酵素的特性做有意義的解釋。
五配位鐵-硫-硝基化合物[(NO)Fe(S,S-C6H4)2]- (20)和[(NO)Fe(S,S-C6H4)2]2- (III-1)可以成功的被合成出來。具有{Fe(NO)}6電子組態的化合物20可以與氧氣反應產生化合物[(NO)Fe(S,SO2-C6H4)(S,S-C6H4)]- (21)。相反的,化合物III-1與氧氣反應產生化合物20為主要產物、[Fe(S,S-C6H4)2]22- 和 [NO3]- (9%)為副產物。此外,化合物 [(NO)Fe(S,SO2-C6H4)(S,S-C6H4)]2- (III-2) 可由化合物21與[EtS]-反應得到。在氧化反應的比較方面,鍵結電子給予能力較弱的sulfinate配位基的化合物III-2會直接轉換成化合物21。由化合物20-21-III-1-III-2之間的轉變也許可以提供一些訊息,以解釋腈水解酵素在活化態與非活化態之間轉換的機制。
Mononuclear, distorted square planar [NiII(SePh)(P(o-C6H3RS)2(o-C6H3RSH))]- (R = H (I-1), SiMe3 (II-la or II-lb)) with a S-H proton interacting with both nickel and sulfur atoms (Type I) or an intramolecular [Ni…H-S] interaction (Type II) were prepared by reaction of [Ni(CO)(SePh)3]- and P(o-C6H4SH)3/ P(C6H3-3-SiMe3-2-SH)3, respectively. The presence of intramolecular [Ni…H-S]/[Ni-S…H-S] interac- tions was verified in the solid state by the observation of the IR vS-H band (Table 4-1) and subsequently confirmed by X-ray diffraction study. The exo-thiol proton in I-1, II-la and II-lb was identified as a D2O exchangeable proton from NMR and IR stu- dies. Instead of the ligand-base oxidation to form dinuclear Ni(II) complexes and diphenyl diselenide, oxidation of THF-CH3CN solution of I-1, II-la and II-lb by O2 resulted in the formation of the mononuclear, distorted trigonal bipyramidal [NiIII(Se- Ph)(P(o-C6H3RS)3)]- (R = H (I-2), SiMe3 (II-2)) accompanied by byproduct H2O identified by 1H NMR, individually. Importantly, the reversible transformation from [Ni(III)-S] (II-2) to [Ni(II)…H-S] (II-1a or II-1b) was observed by reaction of II-2 and LiAlH4, followed by the addition of H2O (H+ source). More sterically hindered and stable complex II-2 reacts with exogenous CO to produce [NiII(CO) (P(C6H3-3-SiMe3-2-S)3)]- (II-3). Complex II-2 undergoes dechlorination in CH2Cl2 solution to generate [NiIII(Cl)(P(C6H3-3-SiMe3-2-S)3)]- (II-4) which acts as a precur- sor for synthesis of [NiIII(SEt)(P(C6H3-3-SiMe3-2-S)3)]- (II-5) via ligand metathesis. The EPR spectra of I-2, II-2, II-4 and II-5 exhibiting high rhombicities with three principal g values of 2.30, 2.09 and 2.0 are consonant with Ni(III) with the odd elec- tron in the dz2 orbital. The cyclic voltammetric response of I-2, II-2 and II-5 reveals a reversible NiIII/II process (Table 4-1). When II-1 is dissolved in CH2Cl2 at room temperature, a slow reaction ensues to give the mononuclear [Ni(Cl)(P(C6H3-3-Si- Me3-2-S)2(C6H3-3-SiMe3-2-SH))]- (II-6) after separation of dinuclear neutral [Ni(P- (C6H3-3-SiMe3-2-S)(C6H3-3-SiMe3-2-SH) (C6H3-3-SiMe3-2-□-S))]2 (II-7) by diethyl ether. Two types of crystalline products, orange-red plate (II-6a) and red-brown block (II-6b), were isolated upon precipitation of II-6 with different solvent pairs. Com- pared to the vS-H stretching frequencies among complexes II-1a, II-1b, II-6a, II-6b and II-7, the vS-H stretching frequencies are disturbed by changing terminal donor ligand (Table 4-1). Upon injecting O2 into a THF solution of II-7, the neutral dinu- clear [NiIII(P(C6H3-3-SiMe3-2-S)2 (C6H3-3-SiMe3-2-□-S))]2 (II-8) is isolated and iden- tified by single crystal X-ray diffraction studies. Electrochemical studies reveal that II-8 undergoes one-electron reduction to a [Ni(III)Ni(II)] species that is further re- duced to a [Ni(II)Ni(II)] species. Some of those results are relative to the structure, reactivity, and spectroscopic properties of the nickel site of bimetallic Ni-Fe active site of [NiFe]H2ase.
The five-coordinated iron-thiolate nitrosyl complexes [(NO)Fe(S,S-C6H4)2]- (20), and [(NO)Fe(S,S-C6H4)2]2- (III-1) have been isolated and structurally characterized. Iron-thiolate nitrosyl complex 20 containing {Fe(NO)}6 core triggers sulfur oxyge- nation by O2 to yield the S-bonded monosulfinate iron species [(NO)Fe(S,SO2- C6H4)(S,S-C6H4)]- (21). In contrast, there is to a certain extent an attack of O2 on the •NO radical of complex III-1 containing {Fe(NO)}7 core leading to the formation of complex 20 accompanied by the minor products, [Fe(S,S-C6H4)2]22- and [NO3]- (9%). Treatment of 1 equiv of [EtS]- and complex 21 in CH3CN-THF yields [(NO)Fe- (S,SO2-C6H4)(S,S-C6H4)]2- (III-2) along with (EtS)2 identified by 1H NMR. Com- pared to III-1, complex III-2 with the less electron-donating sulfinate ligand coordinated to {Fe(NO)}7 core were oxidized by O2 to yield 21. Obviously, the elec- tronic perturbation of the {Fe(NO)}7 core caused by the coordinated sulfinate in III-2 may serve to regulate the reactivity of III-2 toward O2. The iron-sulfinate nitrosyl species with {Fe(NO)}6/7 core exhibit the photolabilization of sulfur-bound [O] moiety under irradiation. The interconversion between complexes 20, 21, III-1 and III-2 (Scheme 4-3) may provide some clues to the transformation pathways between the active and inactive NO-bound forms of Fe-containing nitrile hydratase (Scheme 4-4).
1. (a) Albracht, S. P. J. Biochim. Biophys. Acta 1994, 1188, 167-204.
2. (a)Volbeda, A.; Charon, M. H.; Piras, C.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C. Nature 1995, 373, 580-587. (b) Happe, R. P.; Roseboom, W.; Pierik, A. J.; Albracht, S. P. J Nature 1997, 385, 126.
3. (a) Higuchi, Y.; Yagi, T.; Yasuoka, N. Structure 1997, 5, 1671-1680. (b) Higuchi, Y.; Ogata, H.; Miki, K.; Yasuoka, N.; Yagi, T. Structure 1999, 7, 549-556.
4. Rousset, M.; Montet, Y.; Guigliarelli, B.; Forget, A.; Asso, M.; Bertrand, P.; Fontecilla-Camps, J. C.; Hatchikian, E. C. Proc. Natl. Acad. Sci. U.S.A. 1998, 95, 11625-11630.
5. Garcin, E.; Vernede, X.; Hatchikian, E. C.; Volbeda, A.; Frey, M.; Fontecilla-Camps, J. C. Structure 1999, 7, 557-566.
6. (a) Nicolet, Y.; Piras, C.; Legrand, P.; Hatchikian, C. E.; Fontecilla-Camps, J. C. Structure 1999, 15, 13-23. (b) Peters, J. W.; Lanzilotta, W. N.; Lemon, B.J.; Seefeldt, L. C. Science 1998, 282, 1853.
7. (a) De Lacey, A. L.; Hatchikian, E. C.; Volbeda, A.; Frey, M.; Fontecilla-Camps, J. C.; Fernandez, V. M. J. Am. Chem. Soc. 1997, 119, 7181-7189. (b) Volbeda, A.; Garcin, E.; Piras, C.; de Lacey, A.; Fernandez, V. M.; Hatchikian, E. C.; Frey, M.; Fontecilla-Camps, J. C. J. Am. Chem. Soc. 1996, 118, 12989-12996.
8. Bertrand, P.; Dole, F.; Asso, M.; Guigliarelli, B. J. Biol. Inorg. Chem. 2000, 5, 682-691.
9. Maroney, M. J.; Davidson, G.; Allan, C. B.; Figlar, J. Struct. Bond. 1998, 92, 1-65.
10. Bagley, K. A.; Duin, E. C.; Roseboom, W.; Albracht S. P. J.; Woodruff, W. H. Biochemistry 1995, 34, 5527.
11. Stein, M.; Lubitz, W. Curr. Opin. Chem. Biol. 2002, 6, 243-249.
12. Fernandez, V. M.; Hatchikian, E. C.; Cammack, R. Biochim. Biophys. Acta 1986, 832, 69-79.
13. Coremans, J. M. C. C.; van der Zwaan, G. W.; Albracht, S. P. J. Biochim. Biophys. Acta 1992, 1119, 157-168.
14. (a) Ogata, H.; Mizoguchi, Y.; Mizuno, N.; Miki, K.; Adachi, S.-I.; Yasuoka, N.; Yagi, T.; Yamauchi, O.; Hirota, S.; Higuchi, Y. J. Am. Chem. Soc. 2002, 124, 11628-11635. (b) Foerster, S.; Stein, M.; Brecht, M.; Ogata, H.; Higuchi, Y.; Lubitz, W. J. Am. Chem. Soc. 2003, 125, 83-93.
15. Dole, F.; Fournel, A.; Magro, V.; Hatchikian, E. C.; Bertrand, P.; Guigliarelli, B. Biochemistry 1997, 36, 7847-7854.
16. Stein, M.; Lenthe, E. V.; Baerends, E. J.; Lubitz, W. J. Am. Chem. Soc. 2001, 123, 5839-5840.
17. (a) Fan, C.; Teixeira, M.; Moura, J.; Moura, I.; Huynh, B. H.; Le Gall, J.; Peck, H. D., Jr.; Hoffman, B. M. J. Am. Chem. Soc. 1991, 113, 20-24. (b) Whitehead, J. P.; Gurbiel, R. J.; Bagyinka, C.; Hoffman, B. M.; Maroney, M. J. J. Am. Chem. Soc. 1993, 115, 5629-5635.
18. Axley, M.J.; Böck, A.; Stadtman, T.C. Proc. Natl Acad. Sci. USA 1991 88, 8450-8454.
19. Liaw, W.-F.; Horng, Y.-C.; Ou, D.-S.; Ching, C.-Y.; Lee, G.-H.; Peng, S.-M. J. Am. Chem. Soc. 1997, 119, 9299-9300.
20. Darensbourg, M.Y.; Lyon, E.J.; Smee, J.J. Coord. Chem. Rev., 2000, 1-29.
21. Marr, A.C.; Spencer, D.J.E.; Schroder M. Coord. Chem. Rev., 2001, 1055-1074.
22. Halcrow, M.A.; Christou, G. Chem. Rev. 1994, 94, 2421-2481.
23. (a) Darensbourg, D.J.; Reibenspies, J.H.; Lai, C.-H.; Lee, W.-Z.; Darensbourg, M.Y. J. Am. Chem. Soc. 1997, 119, 7903-7904. (b) Lai, C.-H.; Lee, W.-Z.; Miller, M.L.; Reibenspies, J.H.; Darensbourg, D.J.; Darensbourg, M.Y. J. Am. Chem. Soc. 1998, 120, 10103-10114.
24. Hsu, H.-F.; Koch, S. A.; Popescu, C. V.; Munck, E. J. Am. Chem. Soc. 1997, 119, 271-272.
25. Liaw, W.-F.; Lee, N.-H.; Chen, C.-H.; Lee, C.-M.; Lee, G.-H.; Peng, S.-M. J. Am. Chem. Soc. 2000, 122, 488-494.
26. Rauchfuss, T. B.; Contakes, S. M.; Hsu, S. C. N.; Reynolds, M. A.; Wilson, S. R. J. Am. Chem. Soc. 2001, 123, 6933-6934.
27. Stavropoulos, P.; Muetterties, M. C.; Carrie´, M.; Holm, R. H. J. Am. Chem. Soc. 1991, 113, 8485-8492.
28. Marganian, C. A.; Vazir, H.; Baidya, N.; Olmstead, M. M.; Mascharak, P. K. J. Am. Chem. Soc. 1995, 117, 1584-1594.
29. Nguyen, D. H.; Hsu, H.-F.; Millar, M.; Koch, S. A.; Achim, C.;Bominaar, E. L.; Mu¨nck, E. J. Am. Chem. Soc. 1996, 118, 8963-8964.
30. Alvarez, H.M.; Krawiec, M.; Donovan-Merkert, B.T.; Fouzi, M.; Rabinovich, D. Inorg. Chem. 2001, 40, 5736-5737.
31. Sellmann, D.; Geipel, F.; Lauderbach, F.; Heinemann, F. W. Angew. Chem. Int. Ed., 2002, 41, 632-634.
32. Lai, C.-H.; Reibenspies, J.H.; Darensbourg, M.Y. Angew. Chem. Int. Ed., 1996, 35, 2390-2394.
33. Spencer, D.J.E.; Blake, P.A.; Cooke, P.A.; Schroder, M. J. Inorg. Biochem. 1999, 74, 303-310.
34. Davies, S.C.; Evans, D.J.; Hughes, D.L.; Longhurst, S.; Sanders, J.R. J. Chem. Soc. Chem. Commun. 1995, 1935-1936.
35. Zimmer, M.; Schulte, G.; Luo, X.-L.; Crabtree, R. H. Angew. Chem. Int. Ed., 1991, 30, 193-194.
36. Sellmann, D.; Geipel, F.; Moll, M. Angew. Chem. Int. Ed. Engl., 2000, 39, 561-563.
37. Clegg, W.; Henderson, R.A. Inorg. Chem. 2002, 41, 1128-1135.
38. Sugiura, Y.; Kuwahara, J.; Nagasawa, T.; Yamada, H. J. Am. Chem. Soc. 1987, 109, 5848-5850.
39. Brennan, B. A.; Alms, G.; Nelson, M. J.; Durney, L. T.; Scarrow, R. C. J. Am. Chem. Soc. 1996, 118, 9194.
40. (a) Kobayashi, M.; Shimizu, S. Nat. Biotechnol. 1998, 16, 733-736. (b) Kobayashi, M.; Nagasawa, T.; Yamada, H. Trends Biotechnol. 1992, 10, 402-408.
41. (a) Noguchi, T. Hoshino, M.; Tsujimura, M.; Odaka, M.; Inoue, Y.; Endo, I. Biochemistry 1996, 35, 16777-16781. (b) Odaka, M.; Fujii, K.; Hoshino, M.; Noguchi, T.; Tsujimura, M.; Nagashima, S.; Yohda, M.; Nagamune, T.; Inoue, Y.; Endo, I. J. Am. Chem. Soc. 1997, 119, 3785-3791.
42. Huang, W.; Jia, J.; Cummings, J.; Nelson, M.; Schneider, G.; Lindqvist, Y. Structure 1997, 5, 691-699.
43. Doan, P. E.; Nelson, M. J.; Jin, H.; Hoffman, B.M.; J. Am. Chem. Soc. 1996, 118, 7014-7015.
44. Nagashima, S.; Nakasako, M.; Dohmae, N.; Tsujimura, M.; Takio, K.; Odaka, M.; Yohda, M.; Kamiya, N.; Endo, I. Nat. Struct. Biol. 1998, 5, 347-351.
45. (a) Piersma, S. R.; Nojiri, M.; Tsujimura, M.; Noguchi, T.; Odaka, M.; Yohda, M.; Inoue, Y.; Endo, I. J. Inorg. Biochem. 2000, 80, 283-288. (b) Endo, I.; Nojiri, M.; Tsujimura, M.; Nakasako, M.; Nagashima, S.; Yohda, M.; Odaka, M. J. Inorg. Biochem. 2001, 83, 247-253.
46. Boone, A. J.; Cory, M. G.; Scott, M. J.; Zerner, M. C.; Richards, N. G. J. Inorg. Chem. 2001, 40, 1837-1845.
47. Brennan, B. A.; Cummings, J. G.; Chase, D. B.; Turner, I. M., Jr.; Nelson, M. J. Biochemistry 1996, 35, 10068-10077.
48. Noguchi, T.; Honda, J.; Nagamune, T.; Sasabe, H.; Inoue, Y.; Endo, I. FEBS Lett. 1995, 358, 9-12.
49. (a) Kovacs, J. A. Chem. Rev. 2004, 104, 825-848. (b) Mascharak, P. K. Coord. Chem. Rev. 2002, 225, 210-214.
50. Noveron, J. C.; Olmstead, M. M.; Mascharak, P. K. Inorg. Chem. 1998, 37, 1138-1139.
51. Murakami, T.; Nojiri, M.; Nakayama, H.; Odaka, M.; Yohda, M.; Dohmae, N.; Takio, K.; Nagamune, T.; Endo, I. Protein Science, 2000, 9, 1024-1030.
52. Tyler, L. A.; Noveron, J. C.; Olmstead, M. M.; Mascharak, P. K. Inorg. Chem. 1999, 38, 616-617.
53. (a) Culotta, E.; Koshland, D. E. Science 1992, 258, 1862-1865. (b) Traylor, T. G.; Sharma, V. S. Biochemistry 1992, 31, 2847-2849.
54. Schweitzer, D.; Ellison, J. J.; Shoner, S. C.; Lovell, S.; Kovacs, J. A. J. Am. Chem. Soc. 1998, 120, 10996-10997.
55. Patra, A. K.; Afshar, R.; Olmstead, M. M.; Mascharak, P. K. Angwe. Chem. Int. Ed. 2002, 41, 2512-2515.
56. Shearer, J.; Jackson, H. L.; Schweitzer, D.; Rittenberg, D. K.; Leavy, T. M.; Kaminsky, W.; Scarrow, R. C.; Kovacs, J. A. J. Am. Chem. Soc. 2002, 124, 11417-11428.
57. Lee, C.-M.; Hsieh, C.-H.; Dutta, A.; Lee, G.-H.; Liaw, W.-F. J. Am. Chem. Soc. 2003, 125, 11492-11493.
58. Enemark, J. H.; Feltham, R. D. Coord. Chem. Rev. 1974, 13, 339-406.
59. Block, E.; Ofori-Okai, G.; Zubieta, J. J. Am. Chem. Soc. 1989, 111, 2327-2329.
60. Albano, V. G.; Araneo, A.; Bellon, P. L.; Ciani, G.; Manassero, M. J. Organomet. Chem. 1974, 67, 413.
61. Franolic, J. D.; Wang, W. Y.; Millar, M. J. Am. Chem. Soc. 1992, 114, 6587-6588.
62. Sheldrick, G. M. SADABS, Siemens Area Detector Absorption Correction Program; University of Go¨ttingen: Germany, 1996.
63. Sheldrick, G. M. SHELXTL, Program for Crystal Structure Determination; Siemens Analytical X-ray Instruments Inc.: Madison, WI, 1994.
64. Darensbourg, M. Y.; Liaw, W.-F.; Riordan, C. G. J. Am. Chem. Soc. 1989, 111, 8051-8052.
65. Jessop, P. G.; Morris, R. H. Inorg. Chem. 1993, 32, 2236-2237.
66. Grove, D. M.; van Koten, F.; Zoet, R. J. Am. Chem. Soc. 1983, 105, 1379-1380.
67. (a) Stein, C. A.; Taube, H. Inorg. Chem. 1979, 18, 2212-2216. (b)Branscombe, N. D. J.; Atkins, A. J.; Marin-Becerra, A.; McInnes, E. J. L.;Mabbs, F. E.; McMaster, J.; Schröder, M. Chem. Commun. 2003, 1098-1099. (c) Clark, K. A.; George, A.; Brett, T. J.; Ross, C. R.; Shoemaker,R. K. Inorg. Chem. 2000, 39, 2252-2253.
68. Signor, L.; Knuppe, C.; Hug, R.; Schweizer, B.; Pfaltz, A.; Jaun, B. Chem. Eur. J. 2000, 6, 3508-3516.
69. Clark, K. A.; George, T. A.; Brett, T. J.; Ross, C. R. II, Shoemaker, R. K. Inorg. Chem. 2000, 32, 2252-2253.
70. Grapperhaus, C. A.; Poturovic, S.; Mashuta, M. S. Inorg. Chem. 2002, 41, 4309-4311.
71. Farmer, P. J.; Reibenspies, J. H.; Lindahl, P. A.; Darensbourg, M.Y. J. Am. Chem. Soc. 1993, 115, 4665-4674.
72. Wang, Q.; Marr, A. C.; Blake, A. J.; Wilson, C.; Schröder, M. Chem. Commun. 2003, 2776-2777 and references therein.
73. Lucchese, B.; Humphreys, K. J.; Lee, D.-H.; Incarvito, C. D.; Sommer, R. D.; Rheingold, A. L.; Karlin, K. D. Inorg. Chem. 2004, 43, 5987-5998.
74. Rosenfield, S. G.; Armstrong, W. H.; Mascharak, P. K. Inorg. Chem. 1986, 25, 3014-3018.
75. Hsu, H.-F.; Chu, W.-C.; Hung, C.-H.; Liao J.-H. Inorg. Chem. 2003, 42, 7369-7371.
76. (a) de Vries, N.; Davison, A.; Jones, A. G. Inorg. Chim. Acta 1989, 165, 9. (b) de Vries, N.; Cook, J.; Jones, A. G.; Davison, A. Inorg. Chem. 1991, 30, 2662-2665.
77. Franolic, J. D.; Millar, M.; Koch, S. A. Inorg. Chem. 1995, 34, 1981-1982.
78. Hsu, H.-F.; Koch, S. A.; Popescu, C. V.; Mu¨nck, E. J. Am. Chem. Soc. 1997, 119, 8371-8372.
79. Dilworth, J. R.; Hutson,A. J.; Lewis, J. S.; Miller, J. R.; Zheng, Y.; Chen, Q.; Zubieta, J. J.Chem. Soc., Dalton Trans. 1996, 1093.
80. Grapperhaus, C. A.; Darensbourg, M. Y. Acc. Chem. Res. 1998, 31, 451-459 and references therein.
81. (a) Herebian, D.; Bothe, E.; Bill, E.; Weyhermuller, T.; Wieghardt, K. J. Am. Chem. Soc. 2001, 123, 10012-10023. (b) Sun, X.; Chun, H.; Hildenbrand, K.; Bothe, E.; Weyhermuller, T.; Neese, F.; Wieghardt, K. Inorg. Chem. 2002, 41, 4295-4303. (c) Ray, K.; Bill, E.; Weyhermüller, T.; Wieghardt, K. J. Am. Chem. Soc. 2005, 127, 5641-5654.
82. McCleverty, J. A. Chem. Rev. 2004, 104, 403-418 and references therein.
83. Ricardo, G. S.; Craig, A. G.; Eberhard, B.; Thomas, W.; Frank, N.; Karl W. J. Am. Chem. Soc. 2004, 126, 5138-5153.
84. Greene, S. N.; Chang, C. H.; Richards, N. G. J. Chem. Commun. 2002, 2386-2387.
85. Scarrow, R. C.; Stickler, B. S.; Ellison, J. J.; Shoner, S. C.; Kovacs, J. A.; Cummings, J. C.; Nelson, M. J. J. Am. Chem. Soc. 1998, 120, 9237-9245.