簡易檢索 / 詳目顯示

研究生: 吳俊益
Wu, Jun-Yi
論文名稱: 以聚合物封裝布拉格光纖光柵並以光功率量測加速度
Polymer-Packaged Fiber Bragg Grating Accelerometer Employing Optical Power Detection
指導教授: 王立康
Wang, Li-Karn
口試委員: 劉文豐
Liu, Wen-Fung
馮開明
Feng, Kai-Ming
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 78
中文關鍵詞: 布拉格光纖光柵加速度計聚合物
外文關鍵詞: Fiber Bragg Grating, accelerometer, polymer
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文我們使用簡單的三角形聚合物封裝布拉格光纖光柵(FBG)當作懸臂梁量測振動物體的加速度,並在懸臂梁上放置重物mass,隨著振動產生垂直方向的加速度,造成mass不斷地點擊聚合物表面,且由於三角形各個位置厚度不同的特性,使FBG在不同位置厚度不同產生週期變化,藉以形成週期漸變的布拉格光纖光柵改變反射光功率。
    實驗證實光功率大小和加速度大小有線性的關係,靈敏度達56.06μW/g,共振頻率為60Hz,且由於FBG反射頻寬與溫度變無關,因此外部環境溫度改變的情況下,依舊不影響其量測靈敏度,實現溫度無感的加速度量測。


    In this thesis, we use a single triangle-shaped polymer packaged FBG to calibrate acceleration of a vibrating object. The polymer with FBG inside it is used to be a cantilever beam, with a mass upon to strike it. Vertical acceleration applied to the sensing structure leads to striking on the surface of polymer continuously. Then, because the thicknesses of the polymer are different at different positions, the grating period of FBG varies with position, and the reflected optical power of FBG also varies with acceleration, as the mass-induced strain becomes nonuniform along the longitudinal direction of the FBG.
    When such a strain applies, the FBG is chirped and its reflected optical power changes linearly with the applied acceleration. A high sensitivity of 56.06μW/g at a resonant frequency of 60Hz is demonstrated in the experiment. It is also obtained experimentally that acceleration measurement is temperature insensitive, owing to the fact that the reflection bandwidth of the FBG is temperature-independent.

    第一章 緒論 1 1.1 研究背景 1 1.2 文獻回顧 1 1.3研究目的 3 1.4 論文架構 3 第二章 基本原理 4 2.1 光纖傳播基本原理 4 2.2 光纖傳播損耗 5 2.3 光纖光柵(Fiber Grating) 8 2.3.1 布拉格光纖光柵(Fiber Bragg Grating) 9 2.3.2週期漸變光纖光柵(Chirped Fiber Bragg Grating) 9 2.3.3 布拉格光纖光柵應力與溫度效應 10 2.4 光循環器(optical circulator) 12 2.5 摻鉺光纖(Erbium doped fiber,EDF) 13 第三章 光纖光柵加速度計架構研究設計 15 3.1架構設計 15 3.2 架構分析 17 3.3 共振頻率 19 3.4 3D建模設計尺寸 21 3.5 Ansys 模擬分析 21 3.6光功率和加速度之間的關係 23 3.7 加速度與應變梯度c、εmax的關係 25 3.8理論量測靈敏度 31 第四章 實驗系統與數據分析 35 4.1 光源 35 4.2. 實驗系統 36 4.3. ADXL345加速度計 37 4.4 振動台振動頻率問題 38 4.5實驗數據 39 4.5.1光功率和電壓之間的關係 39 4.5.2定溫下測量加速度實驗 41 4.5.3量測誤差 61 4.5.4不同溫度下固定加速度的電壓變化 63 4.5.5 不同溫度下靈敏度變化和解調加速度誤差 68 第五章 結論與未來展望 74 5.1 結論 74 5.2 未來展望 75 參考文獻 76

    [1] D. Donlagic and B. Culshaw, “Microbend Sensor Structure for Use in Distributed and Quasi-Distributed Sensor System Based on Selective Launching and Filtering of The Modes In Graded Index Multimode Fiber,” Journal of Lightwave Technology, Vol.17, No.10, pp.1856-68,1999

    [2] D. Harvey, R McBride and J.D.C. Jones, “Fiber Optic Sagnac Interferometer Based Velocimeter,” Meas. Sci Technol, Vol.3, No.11, pp.1077,1992

    [3] Y. J. Chiang, L. K. Wang, H. S. Chen, C. C. Yang and W. F. Liu, “Multipoint Temperature-Independent Fiber Bragg Grating Strain-Sensing System Employing an Optical-Power-Detection Scheme,” Applied Optics, Vol.41, No.9, pp.1661-1667,2002

    [4] Y. J. Chiang, L. K. Wang, W. F. Liu, H. S. Chen, C.W. Hsu and C.C. Yang, “Temperature-Insensitive Linear Strain Measurement Using Two Fiber Bragg Gratings in a Power Detection Scheme,” Optics Communications, Vol.197, No.4-6, pp.327-330,2001

    [5] T. Guo, Q. Zhao, H. Zhang, L. Xue, G. Li, B. Dong, B. Liu, W. Zhang, G. Kai and X. Dong, “Temperature-Insensitive Fiber Bragg Grating Force Sensor via a Bandwidth Modulation and Optical-Power Detection Technique,” Journal of Lightwave Technology, Vol.24, No.10, pp.3797-3802,2006

    [6] H. F. Lima, P. F. Antunes, João de Lemos Pinto and Rogério N. Nogueira, “Simultaneous Measurement of Strain and Temperature with a Single Fiber Bragg Grating Written in a Tapered Optical Fiber,” IEEE Sensor Journal, Vol. 10, No.2, pp.269-273,2010

    [7] Dipankar Sengupta; Putha Kishore, “Continuous Liquid Level Monitoring Sensor System Using Fiber Bragg Grating,” Optical Engineering, Vol.53, pp.1021-1027,2014

    [8] C.C CHEN, L. Liang, W. W. Quan, L.Z. Liao and J.H.HU, “Young’s Modulus Measurement of Metal Wires Using FBG Sensor,” Photonic Sensors, Vol.9, No.3, pp.277-283,2019

    [9] L. Li, X.D. Dong*, W. J. Zhou and Y. L. Sun, “Temperature-Independent Accelerometer with A Strain-Chirped Fiber Bragg Grating,” SPIE-OSA-IEEE/ Vol. 7634,2009

    [10] Y. I. Zhu, P. Shum, C. Lu, B. M. Lacquet, P. L. Swart and S. J. Spammer, “Temperature-Insensitive Fiber Bragg Grating Accelerometer,” IEEE Photonics Technology Letters, Vol.15, No.10, pp.1437-1439,2003

    [11] N. Chenxiao and Z. Xushe, “Fiber Bragg Grating Vibrating Sensors And its Signal Processing System,” 2007 8th international Conference on Electronic Measurement and Instruments,2007

    [12] M. S. Müller, T. C. Buck and A.W. Koch, “Fiber Bragg Grating-based Acceleration Sensor,” International Symposium on Optomechatronic Technologies, pp.127-132,2009

    [13] J. Zhu, J. Wang, P. Gan, Z.L Hu and Y.M. Hu, “Design and Analysis of a Novel Dual FBG Accelerometer Based on Lantern Shape Metallic Shells,” IEEE Sensors Journal, Vol.17, No 16, pp.5130-5135,2017

    [14] T.A. Berkoff and A.D. Kersey, “Experimental Demonstration of a Fiber Bragg Grating Accelerometer,” IEEE Photonics Technology Letters, Vol.8, No.12, pp.1677-1679,1996

    [15] M.D. Todd, G.A. Johnson, B.A. Althouse and S.T. Vohra, “Flexural Beam-Based Fiber Bragg Grating Accelerometers,” IEEE Photonics Technology Letters, Vol.10, No.11, pp.1605-1607,1998

    [16] S.R.K. Morikawa, A.S. Ribeiro, R.D. Regazzi, L. C. G. Valente and A.M.B. Braga, “Triaxial Bragg Grating Accelerometer,” 15th Optical Fiber Sensors Conference Technical Digest,pp.95-98,2002

    [17] W.J. Zhou, X.J. Dong*, Y.X. Jin and C.L. Zhao, “Cantilever-based FBG Sensor for Temperature-Independent Acceleration Measurement,” SPIE-OSA-IEEE/ Vol. 7634,2009

    [18] Alessio Stefani, W. Yuan , Soren Andresen , and Ole Bang, “Polymer Optical Fiber Bragg Grating Sensors Measuring Acceleration,” 35th Australian Conference on Optical Fibre Technology,2010

    [19] Alessio Stefani, Søren Andresen, W. Yuan, Nicolai Herholdt-Rasmussen, and Ole Bang, “High Sensitivity Polymer Optical Fiber Bragg Grating Based Accelerometer,” IEEE Photonics Technology Letters, Vol. 24, No. 9, pp.763-765, 2012

    [20] K. Li, Tommy H.T. Chan, M.H. Yau, David P. Thambiratnam, and H.Y. Tam, “Biaxial Fiber Bragg Grating Accelerometer Using Axial and Transverse Forces,” IEEE Photonics Technology Letters, Vol. 24, No. 9, pp.1549-1552,2012

    [21] J. Wang, G.D. Peng, Z.L Hu, H.Y Yang, and Y.M Hu, “Design and Analysis of a High Sensitivity Accelerometer Based on Local Strain Amplification,” IEEE Sensors Journal, Vol.15, No10, pp.5442-5449,2015

    [22] J. Wang, Y.J. Zeng, C.Y. Lin, Z.L. Hu, G.D. Peng, and Y.M Hu, “A Miniaturized FBG Accelerometer Based on Thin Polyurethane Shell,” IEEE Sensors Journal, Vol.16, No.5, pp.1210-1216,2016

    [23] O. P. Parida, J. Nayak and S. Asokan,” Design and Validation of a Novel High Sensitivity Self-Temperature Compensated Fiber Bragg Grating Accelerometer,” IEEE Sensors Journal, Vol. 19, No. 15, pp.6197-6204,2019

    [24] Q.P. Liu, X. He, X.G Qiao, T. Sun and Kenneth T.V. Grattan, “Design and Modeling of High Sensitivity Fiber Bragg Grating-Based Accelerometer,” IEEE Sensors Journal, Vol.19, No.14, pp.5439-5445,2019

    [25] J. M. Liu, Photonic Devices, Cambridge University Press,2005.

    [26] J. M. Liu Senior, Optical Fiber Communications: Principle and Practice, 3rd edition, Financial Times/Prentice Hall,2009

    [27] H. Ono, M. Yamada, T. Kanamori, S. Sudo and Y. Ohishi,”1.58-\mum Band Gain-Flattened Erbium-Doped Fiber Amplifiers for WDM Transmission Systems, “Journal of Lightwave, Vol.17, No.3, pp.490,1999

    [28] Y. Sun, J. L. Zyskind, and A. K. Srivastava, “Average Inversion Level, Modeling, and Physics of Erbium-Doped Fiber Amplifiers”, IEEE Journal of selected topics in quantum electronics, Vol.3, No.4, pp.991-1007, 1997.

    [29] 許煥揚,”使用聚合物封裝布拉格光纖光柵製成壓力偵測器研究,”國立清華大學光電工程研究所碩士論文,2014

    QR CODE