簡易檢索 / 詳目顯示

研究生: 林昭元
論文名稱: 鈣矽酸鹽骨水泥的機械性質與水合機制
指導教授: 金重勲
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 81
中文關鍵詞: 三鈣矽酸鹽氫氧基磷灰石固化時間抗壓強度水合機制
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 三鈣矽酸鹽C3S (3CaO.SiO2)是工業用波特蘭水泥的主要成分之一,具有水泥的自固化特性,我們以固相反應法合成C3S,並對合成後殘餘的氧化鈣做半定量的檢定,接下來實驗主要分為機械性質測試與水合機制的討論。
    機性測試包含兩大部分
    第一:固化時間,抗壓強度,表面 pH值測定。除此之外,我們添加磷酸鹽類溶液於固相反應合成的C3S中,由X-ray鑑定知氧化鈣減少、氫氧基磷灰石產生。在機械性質量測方面,固化時間與抗壓強度均減少,表面的pH值則有下降。
    第二:以水熱法製備奈米級顆粒的氫氧基磷灰石,並將之添加入水泥粉中,所選用的水泥粉為C3S以及ZnC3S(Zn/Ca = 5 mol%),量測水合後水泥的機械性質。總體上ZnC3S的抗壓強度較C3S高,較特別的是發現添加HA的C3S抗壓強度會下降,但在10 wt%的HA含量時,則有最大的固化時間。而ZnC3S部分,發現添加7.5wt% HA時,有最大的抗壓強度與固化時間。
    水合機制分面:將水合時期分為三個時期(初、中、後期),發現在初期時,水泥會長成一顆顆剌針狀的海膽結構。中期時,剌針狀結構會溶解。而到後期,剌針狀結構已消失,有較大的結晶顆粒出現。並以X-ray鑑定各個時期出現的水合物(C-S-H)。


    摘要……………………………………………………………………I Abstract……………………………………………………………….II 致謝…………………………………………………………………III 目錄……………………………………………………………………IV 圖目錄………………………………………………………………….V 表目錄…………………………………………………………………..VI 目錄 第一章 緒論…………………………………………………………..1 1-1 前言 …………………………………………………………… 1 1-2 研究目的 ………………………………………………………. 4 第二章 文獻回顧 ………………………………………………….. 5 2-1 波特蘭水泥(Portland cement)的基本性質 ……………... 5 2-2 C3S的水合特性 ……………………………………………. 07 2-3 水泥水合的過程 ……………………………………………. 11 2-4 添加鋅元素對於C3S的影響 ………………………………. 16 2-5 氫氧基磷灰石之生物適應性及基本性質 …………………….. 19 第三章 實驗材料與方法 ……………………………………………. 25 3-2 儀器設備 ……………………………………………… 26 3-3 實驗藥品與耗材 …………………………………………… 37 3-4 固相反應法製備C3S與ZnC3S …………………………. 28 3-4.1 煆燒副產物CaO的半定量 ………………………………… 29 3-4.2 C3S與磷酸鹽類溶液的水合 ……………………………….. 29 3-5 水熱法製備HA ( hydroxyapatite ) ……………………………. 29 3-6 合成水泥粉末之成分與晶相鑑定 ……………………………. 30 3-6.1 X光繞射分析 ………………………………………………30 3-6.2 掃描式電子顯鏡 …………………………………………. 30 3-7 水泥水合後抗壓強度與固化時間測試 ……………………… 31 3-7.1 操作時間(working time)與固化時間(setting time): ….. 31 3-7.2 抗壓強度測試 ……………………………………………. 33 3-7.3 表面pH值測試 ………………………………………….. 33 3-7.4 置於磷酸溶液中pH值測試 ……………………………33 3-7.5 X-ray鑑定氫氧基磷灰石相 ……………………………33 3-8 HA添加對水泥性質的影響 ………………………………34 3-8.1 操作時間,固化時間(同前述方法)及抗壓強度測試 ……...34 第四章 實驗結果與討論 …………………………………………..36 4-1 C3S的製備與CaO的半定量 …………………………………36 4-1.1 CaO的半定量 ..............................………40 4-2 加入磷酸鹽類對C3S的影.……………………………….42 4-2.1 C3S─磷酸二氫鈣Ca(H2PO4)2 ……………………………42 4-2.3 固化時間的測定 ………………………………………46 4-2.4 表面pH值的測定………………………………………..48 4-3 C3S、Zn C3S,及各含量添加HA的機械性質 ………....49 4-3.1 固化時間(setting time)與最佳水粉比:………………..49 4-3.2抗壓強度(strength stress):……………………………..51 4-3.4 添加HA後的機械性質變化……………………………..52 4-3.5 添加HA對抗壓強度的影響 …………………………54 4-3.6 C3S的注射性質實驗 …………………………………….56 4-4.1 不同水合時間下的SEM…………………………………58 4-4.2 X-ray分析 ………………………………………………….62 第五章 結論……………………………………………………….71 第六章 參考文獻 …………………………………………………..72 圖目錄 圖2-2a 波特蘭水泥中各種成分的水合速度…………………………7 圖2-2b C3S水合時的奈米結晶區………………………………….9 圖2-2c C3S水合時的顯微結構圖…………………………………10 圖2-3a 水泥固結時的放熱率曲線…………………………………11 圖2-3b C3S水合時的步驟圖: ……………………………………...14 圖2-3c 波特蘭水泥水合時的反應式……………………………..15 圖2-3c 波特蘭水泥水合時的成分變化……………………………..16 圖2-4a 固相反應法中ZnO的添加量對C3S成分的影響……...18 圖2-5a 氫氧基磷灰結構失序排列…………………………………22 圖2-5b 氫氧基磷灰石結構沿c軸投影示意圖……………………23 圖3.7.1a 標準吉爾摩試驗針 ……………………………………...32 圖4-1a(CaO-SiO2相圖)…………………………………………..37 圖4-1b (CaO,C2S,C3S,ZnO的標準x-ray繞射圖) …………..38 圖4-1c 5,10,20,30 wt%CaO混入C2S做的XRD繞射圖。…39 圖4-1e CaO/C3S x – ray峰值的相對強度比……………………41 圖4-2.1a C3S─磷酸二氫鈣Ca(H2PO4)2 ………………………..43 圖4-2.1b C3S─磷酸氫二銨(NH4)2HPO的x-ray繞射圖……...44 圖4-2.1c ZnC3S─磷酸氫二銨(NH4)2HPO4的x-ray繞射圖 …44 圖4-2.1e C3S-─磷酸氫二氨的固化時間………………………..47 圖4-2.1f ZnC3S-─磷酸氫二氨的操作時間……………………47 圖4-3.1a C3S水合的固化時間 ……………………………………...49 圖4-3.1b ZnC3S水合的固化時間…………………………………50 圖4-3.1c C3S與ZnC3S的固化時間………………………………50 圖4-3.4a 添加HA後的固化時間…………………………………53 圖4-3.4b 添加微量HA(< 10 wt%)的固化時間……………………53 圖4-3.5a HA-C3S的抗壓強度(C3S的最大抗壓強度為116 MPa)…55 圖4-3.5b HA-ZnC3S的壓強度(ZnC3S的最大抗壓強度131MPa).. 55 圖 4-3.6a C3S注射入水中…………………………………………..57 圖4-3.6b C3S注射入水中…………………………………………..57 圖4-4.1b 水合時的硬化機制 ……………………………………...59 圖4-4.1c C3S在不同養生時間下的SEM ………………………..60 圖4-4.1d ZnC3S在不同養生時間下的SEM ………………………61 圖4-4.2a為C3S在水合時,不同的Ca/Si比所再結晶的各種結構……………………………………………………………………66 圖 4-4.2b 四種可能水合物的標準x-ray繞射……………………67 圖 4-4.2c C3S在不同水養生時間下的x-ray圖……………………68 表目錄 表1-1氫氧基磷灰石(HA)植入材的發展 ……………………………3 表2-1.1 不同類型水泥之組成與性質 ……………………………6 表2-5.a人體硬組織中氫氧基磷灰石的含量………………………19 表2-5b氫氧基磷灰石與人體骨骼機械性質比較 …………………20 表2-5c氫氧基磷灰石的晶體及物化特性 ……………………………24 表3.7.5a 內文中所用的JCPDS資料 ………………………………34 表4-1d CaO/C3S x – ray峰值的相對強度比……………………41 表4-2.1d溶液放置一天後的pH值…………………………………45 表4-2.4 a C3S與ZnC3S 表面pH值的測定 ………………………48

    第六章 參考文獻
    1 洪敏雄,吳世經,生醫陶瓷材料,Proc. Of the 1990 Annual Conf. Of the Chinese Soc. For Mater. Sci,717-727
    2.洪炳南,醫學工程,第四卷第一期,23-31,1984
    3.林峰輝,“鈉矽磷生醫骨科玻璃陶瓷之研究”,成功大學礦冶及材料科學研究所博士論文,1989
    4.韓宗立,“生醫用氫氧基磷灰石之研究”,成功大學礦冶及材料科學研究所碩士論文,1986
    5.Akao M (1891). “Mechanical properties of sintered hydroxyapatite for prosthetic application”, J. Mater. Sci. 16:809-812
    6.Akao M, Miura N, Aoki H (1984). “Fracture Toughness of Sintered Hydroxyapatite and β-Tricalcium Phosphate”, Yogyo-Kyokai-Shi, 92 [11], pp. 672-674
    7.Arends J, Christoffersen J,Eckert H, Fowler BO, Heughebaert JC, Nancollas GH, Yesinowski JP, Zawacki SJ (1987). “A calcium hydroxyapatite precipitated from an aqueous solution”, J. of Crystal Growth 84:515-532.
    8.Hench L.L.,”Bioceramics:From Concept to Clinic”, J.Am. Ceram. Soc. 74[7] ,1487-1510,1991
    9.Hulbert S.F.,”Bioactive ceramic-bone interface ”,CRC Handbook of Bioactive Ceramics,vol 1,ed. Yamamuro T. ,Hench L.L. and Wilson J.,3-6,1991
    10.呂重明,“生醫材料的衰變探討系列之二”,Biomedical Engineering-Application,Basic&Communication,Vol.3,No.1,1991

    11. H.Aoki,“Medical application of hydroxyapatite”, Ishiyaku Euro America, Inc. Tokyo. St. Louis, Takayama Press, 1994.

    12. K. de Groot, “Medical applications of calcium phosphate bioceramics”,日本協會學術論文誌,99,943-953,1991.

    13. J.S.Sun, H.C. Liu, Walter H.S Chang, J. Li, F.H. Lin, H.C. Tai,“The influence of hydroxyapatite particle size on bone cell activities:an in vitro study”, J. Biomed. Mater. Res.,39,390,1998.

    14. M. MattioliBelmonte , A. de Benedittis , R.A.A. Muzzarelli , M.G. Gandolfi, C. Zucchini, A.Krajewski , A. Ravaglioli , E. Roncari , M.Fini , R. Giardino, “Bioactivity modulation of bioactive materials in view of their application in osteoporotic patients”, J. Master. Sci.Mater. Med. ,9,485,1998.

    15. Toshiaki Kitsugi et al., “Bone bonding behavior of three kinds of apatite containing glass ceramics”, J.Biomed. Mater. Res.,Vol.20,1295-1307,1986.

    16. K.de ,Groot ,“Bioceramics of Calcium Phosphate”, CRC Press , Inc., Florida , 1983.

    17. Jacob S. Hanker , Beverly L. Giammara , “Biomedical Materials and Devices”, Materils Research Society Symposium Proceedings , Vol.110, chapter 7 , 1987 .

    18. C. M. George, "Industrial Aluminous Cements," P. Barnes (ed) Applied Sci. Publ., 1981.

    19. K.L. Scrivener and A. Capmas, “Calcium Aluminate Cements” 4th Edn.,(ed) P.C. Hemlett, Arnold, London, 1998.

    20. H. M. Jennings, “ A model for the microstructure of calcium silicate hydrate in cement pate“, Cement and Concrete Research, Vol.30, pp.101-116,2000.

    21. I.Izquierdo-Barba, A.J.Salinas, M.Vallet-Regi, “In vitro calcium phosphate layer formation on sol-gel glasses of the CaO-SiO2 system”, J. Biomaterial,pp.144-150,1999

    22. 王文熙, “以過渡金屬添加及加碼射線之介穩水泥做為牙科逆向封填材料的研究”, 國立台灣大學工醫學工程學研究所碩士論文,2001.

    23.E.M. Gartner, K.E. Kurtis “Proposed mechanism of C-S-H growth tested by soft X-ray microscopy.”Cement and Concrete Research .30 (2000) 817-822
    24.McCarthy T.L., Centrella M., Canalis E.:”Further biochemical and molecular characterization of primary rat parietal bone cell cultures”. Journal of Bone and Mineral Research 13:401-408,1988
    25.D.menetrier, I. Jawed, T.S. Sun and J. Skalny Martin Marietta Laboratories “ESCA AND SEM STUDIES ON EARLY C3S HYDRATION ”cement and concrete research. Vol. 9, pp. 473-482 1979
    26.M. Regourd, J.H. THOMASSIN, P.BAILLIF and J.C. TOURAY “Study of the early hydration of Ca3SiO5 by X-Ray photoelectron”cement and concrete. Vol. 10,pp. 223-230, 1980.
    27.K.O. Kjellsen and E. Helsing Atlassi “X-ray microanalysis of hydrated cement: is the analysis total related to porosity? ”cement and concrete. Vol. 28.pp.161-165.1998
    28. Leon Blacka,*, Krassimir Garbeva,” Characterisation of crystalline C-S-H phases by X-ray photoelectron spectroscopy ” Cement and Concrete Research 33 (2003) 899– 911
    29. R.J. Kirkpatrick, J.L. Yarger, P.F. McMillan, P. Yu, X. Cong, “Riman spectroscopy of C-S-H, tobermorite and jennite”, Adv. Cem. Based Mater. 5 (1997) 93– 99.Mineral. 80 (1995) 841– 844.
    30. H. Seyama, M. Soma, “Bonding-state characterization of the constituent elements of silicate minerals by X-ray photoelectron spectroscopy”,
    J. Chem. Soc., Faraday Trans. 81 (1985) 485– 495.
    31. K. Okada, Y. Kameshima, A. Yasumori, “Chemical shifts of silicon Xray photoelectron spectra by polymerization structures of silicates”, J.
    Am. Ceram. Soc. 81 (7) (1998) 1970– 1972.
    32. J.A. Gard, H.F.W. Taylor, “The crystal structure of foshagite”, Acta Crystallogr. 13 (1960) 785–793.
    33. R.E. Marsh, “A revised structure for a-dicalcium silicate hydrate”, Acta Crystallogr. C 50 (1994) 996– 997.
    34. K.M.A. Malik, J.W. Jefferey,”A re-investigation of the structure of afwillite”, Acta Crystallogr. 32 (1976) 475– 480.
    35. B. Carriere, J.P. Deville, “X-ray photoelectron study of some silicon oxygen compounds”, J. Electron Spectrosc. Relat. Phenom. 10 (1977) 85– 91.
    36. Paul D. Tennisa,1, Hamlin M. Jenningsa,b,” A model for two types of calcium silicate hydrate in the microstructure of
    Portland cement pastes” Cement and Concrete Research 30 (2000) 855±863
    37. Hamlin M. Jennings” A model for the microstructure of calcium silicate hydrate in cement paste” Cement and Concrete Research 30 (2000) 101–116
    38. Pierre-Claude Aý»tcin” Cements of yesterday and today
    Concrete of tomorrow” Cement and Concrete Research 30 (2000) 1349±1359

    39. A. Plassaisa,*, M.-P. Pomie`sa, N. Lequeuxa, P. Bocha, J.-P. Korbb, D. Petitb, F. Barberonb” Micropore size analysis by NMR in hydrated cement” Magnetic Resonance Imaging 21 (2003) 369–371
    40. Josef Trittharta,*, Frank Ha¨ußlerb” Pore solution analysis of cement pastes and nanostructural investigations of hydrated C3S”” Cement and Concrete Research 33 (2003) 1063–1070
    41. Hamlin M. Jennings*Reply to the discussion of the paper by Ivan Odler `”A model for the microstructure of calcium silicate hydrate in cement paste”Cement and Concrete Research 30 (2000) 1339± 1341
    42. Ivan Odler*, Stephan Cordes” Initial hydration of tricalcium silicate as studied by secondary neutrals mass spectrometry II. Results and discussion” Cement and Concrete Research 32 (2002) 1077–1085
    43. Paul W. Brown “Hydration behavior of calcium phosphates is analogous to hydration behavior of calcium silicates” Cement and Concrete Research 29 (1999) 1167–1171
    44. R.I. Martin, P.W. Brown, “Hydration of tetracalcium phosphate”, Adv Cem Res 5 (19) (1993) 119–125.
    45. W.E. Brown, L.C. Chow,“Combination of sparingly soluble calcium phosphates in slurries and pastes as remineralizers and cements”, U.S.Patent No. 4,612,053, 1986.
    46. P.W. Brown, R.I. Martin, K.S. Ten Huisen,”Factors influencing theformation of monolithic hydroxyapatite at physiological temperature”,
    in: Biomedical and Biological Applications of Glass and Ceramics, Bioceramics Materials and Applications II, Am Ceram Soc, Westerville,OH 1996, pp. 37–48.
    47. M.T. Fulmer, R.I. Martin, P.W. Brown,”Formation of hydroxyapatite at near-physiological temperature”, J Mat Sci Materials in Medicine 3 (1992) 299–305.
    48. K.S. TenHuisen, B.A. Clark, M. Klimkiewicz, P.W. Brown, “A microstructural investigation of calcium-deficient and stoichiometric hydroxyapatite synthesized from CaHPO4 •2H2O and Ca4(PO4)2O”, Cells and Materials 6 (1996) 251–267.
    49. W.E. Brown, L.C. Chow, A new calcium phosphate, water-setting cement,
    in: P.W. Brown (Ed.), Cements Research Progress-1986,
    American Ceramic Society, Westerville, OH, 1987, pp. 351–379.
    50. P.W. Brown, “Phase relationships in the ternary system
    CaO-P2O5-H2O at 258℃”, J Am Ceram Soc 75 (1992) 17–22.
    51.Ren-Jei Chung,Tsung-Shune Chin, “Bone-cements Based on Tricalcium Silicate” Journal Citation.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE