簡易檢索 / 詳目顯示

研究生: 劉正禮
Cheng-Li Liu
論文名稱: 監控者於自動化系統認知決策模式之研究
Study of Supervisor's Cognitive Decision Model in Automation
指導教授: 黃雪玲
Sheue-Ling Hwang
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2001
畢業學年度: 89
語文別: 英文
論文頁數: 70
中文關鍵詞: 情境認知信任度可靠度警戒度監控自動化系統決策模糊控制
外文關鍵詞: SA, Trust, Reliability, Vigilance, Supervisory, Automation, Decision-making, Fuzzy Control
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自動化系統操控績效(ASOP)意指自動化裝置如何為監控者有效的監督及操控。本研究的目的,即由人類動態決策之特性,探討及提升自動化操控的作業績效。過去的研究發現,情境認知(Situation Awareness)與信任度(Trust)是影響自動化系統執行績效的重要因子。本研究第一階段,首先建構一情境認知與信任度的認知決策概念架構,依此架構建構以情境認知、信任度與硬體可靠度為衡量自動化系統執行績效的關係模型;其次,提出自動化系統操控績效的量化評估模型;再應用品質工程穩健設計之技術,建立一衡量情境認知、信任度與可靠度的品質特性目標函數,評估其對自動化操作系統績效的影響效果;接著,設計一核電廠飼水模擬系統環境,並以矩陣正交實驗設計法進行模擬實驗,以驗證該模型之適用性;最後,依照實驗的結果,構建模糊邏輯警戒度警報系統,以提升監控作業績效。經由第一次實驗之結果分析:以動態決策特性所建構之品質目標函數(□值),可獲致最佳ASOP之控制因子水準組合;擁有正確的情境認知與決策閥,較易做出正確的決策與較佳的執行績效;這其中,適當的警戒度是一重要的關鍵。在第二次實驗之結果分析:應用□值構建模糊邏輯警戒度警報系統,確可有效提升操控績效。本研究之結果顯示品質目標函數可作為衡量ASOP的一種標準,及作為選擇最佳操作者的評價準則之一;結合品質目標函數及模糊控制技術應用於人機介面的設計,以改善認知決策與操控績效確實是一正確而重要的方向。


    Automation system operating performance (ASOP) is a concept of how well an automation unit (AU) is monitored and performed by supervisors. The purpose of this research was to study and improve the ASOP for dynamic characteristics of human decision-making in automation. Previous researches have shown that situation awareness (SA) and trust are the important and influential factors of automation system performance. Firstly, a conceptual structure of relationship between SA and trust and a model of automated system performance with relation to SA, trust and automation reliability were developed. Secondly, a quantitative ASOP measuring model was proposed. Thirdly, a matrix experiment based on orthogonal arrays through a simulated system of Auxiliary Feed-Water System (AFWS) was conducted to verify the model specifically on ASOP. Finally, according to the results of the first experiment, a fuzzy logical vigilance performance alarm system was constructed to improve the operating performance. The first experimental results indicated that the quality-objective function (□ value) of human dynamic decision-making characteristics to measure the ASOP is easy and objective, a good situation awareness and correct decision-making calibration may have a greater likelihood of making appropriate decisions and performing well in automation, and keeping appropriated vigilance is an important focus. The second experimental results indicated that applying the □ value to design the fuzzy logical vigilance performance alarm system can improve the ASOP efficiently. The results of this study indicates that the quality-objective function could be regarded as measuring standard of ASOP and evaluating standard of selecting the adapted supervisors in automation. The function combined with fuzzy technique to design human-machine interface on improving cognitive decision and operating performance is a correct and important direction.

    1.Adams, M. J., Tenney, Y. J. & Pew, R. W. (1995). Situation Awareness and the Cognitive Management of Complex Systems. Human Factors, 37(1), 85-104.
    2.Barber, B. (1983). Logic and the Limits of Trust, New Brunswick: Rutgers University Press.
    3.Carmody, M. A., & Gluckman, J. P. (1993). Task-Specific Effects of Automation and Automation and Automation Failure on Performance, Workload and Situational Awareness. Proceeding of the Seventh International Symposium on Aviation Psychology (pp. 167-171). Columbus, OH: Ohio State University.
    4.Cherifi, E., Riera, B. and Millot P. (1998). Integration of information theory and fuzzy sets theory for complex systems supervision application to a steam generator process. Proceeding of the Seventh IFAC Symposium on Man-Machine Systems, 191-196.
    5.Childs, J. M. (1976). Signal complexity, response complexity, and signal specification. Human Factors, 18, 149-160.
    6.Dehnad, K. (1989). Quality Control, Robust Design, And the Taguchi Method. Pacific Grove. California: Wadsworth, Inc.
    7.Driankov, D., Hellendoorn, H. & Reinfrank, M. (1996). An Introduction to Fuzzy Control, New York: Springer.
    8.Eason, K. D. (1988). Information Technology and Organizational Change. London: Taylor & Francis.
    9.Eason, K. D. (1991). Ergonomic perspectives on advances in human-computer interaction. Ergonomics, 34(6), 721-741.
    10.Endsley, M. R. (1995a). Toward a Theory of Situation Awareness. Human Factors, 37, 32-64.
    11.Endsley, M. R. (1995b). Measurement of Situation Awareness in Dynamic Systems. Human Factors, 37, 65-84.
    12.Endsley, M. R., English, T. M., & Sundararajan, M. (1997). The Modeling of Expertise: The Use of Situation Models for Knowledge Engineering. International Journal of Cognitive Ergonomics, 1(2), 119-136.
    13.Endsley, M. R., & Smith, R.P. (1996). Attention distribution and decision making in tactical air combat. Human Factors, 38, 232-249.
    14.Hinsley, D., Hayes, J. R., and Simon, H. A. (1977). Cognitive processes in comprehension. Hillsdale, NJ: Erlbaum.
    15.Kim, Y. H., Ahn, S. C. and Kwon, W. H. (2000). Computational Complexity of General Fuzzy Logic Control and Its Simplification for a Loop Controller. Fuzzy Sets and Systems, 111, 215-217.
    16.Lee, J. D., & Moray, N. (1992). Trust, Control Strategies and Allocation of Function in Human-Machine Systems. Ergonomics, 35(10), 1243-1270.
    17.Lee, J. D., & Moray, N. (1994). Trust, Self Confidence and Operators' Adaptation to Automation. International Journal of Human-Computer Studies, 40, 153-184.
    18.Lewandowski, L. J. and Kobus, D.A. (1989). Bimodal information processing in sonor performance. Human Performance, 2(1), 73-84.
    19.Li, M. H. (1998). A Study on the Threshold Value of Dynamic Characteristic. In Proceeding of the 1998 CIIE National Conference (pp. 526-531). Taiwan: Chinese Institute of Industrial Engineering.
    20.Liu, C. L. and Hwang, S. L. (2000). Evaluating the Effects of Situation Awareness and Trust with Robust Design in Automation. International Journal of Cognitive Ergonomics, 4(2), 125-144.
    21.Lunani, M., Nair, V. N. & Wasserman G. S. (1997). Graphical Methods for Robust Design with Dynamic Characteristics. Journal of Quality Technology, 29, No.3, 327-338.
    22.Maghsoodloo, S. (1990). The Exact Relation of Taguchi’s Signal-to-Noise Ratio to His Quality Loss Function. Journal of Quality Technology, 22, No.1, 57-70.
    23.Moray, N. (1986). Handbook of Perception and Human Performance, New York, NY: Willey Inc.
    24.Muir, B. M. (1987). Trust between humans and machines, and the design of decision aids. International Journal of Man-Machine studies, 27, 527-539.
    25.Muir, B. M. (1994). Trust in Automation: Part □. Theoretical Issues in the Study of Trust and Human Intervention in Automated Systems. Ergonomics, 37(11), 1905-1922.
    26.Muir, B. M. (1996). Trust in Automation: Part □. Experimental Studies of Trust and Human Intervention in a Process Control Simulation. Ergonomics, 39(3), 429-460.
    27.Nair, V. N. (1992). Taguchi’s parameter design: a panel decision, Technometrics, l(34), 127-160.
    28.Parasuraman, R. (1979). Memory load and event rate control sensitivity decrements in sustained attention. Science, 205, 925-927.
    29.Perona, M. (1998). Manufacturing conformity assessment through taguchi’s quality loss function, International Journal of Quality & Reliability Management, 15(8/9), 931-946.
    30.Phadke, M. S. (1989). Quality Engineering Using Robust Design, Englewood Cliffs, NJ: PTR Prentice-Hall, Inc.
    31.Preece, J. (1994). Human-Computer Interaction. Harlow, England: Addison-Wesley.
    32.Rempel, J. K., Holmes, J. G., & Zanna, M. P. (1985). Trust in Close Relationships. Journal of Personality and Social Psychology, 49, 95-112.
    33.Swets, J. A. and Pickett, R. M. (1982). The Evaluation of Diagnostic System. New York: Academic Press.
    34.Taguchi. G. (1991a). Taguchi Methods, Research and Development Vol. 1. American Suppliers Institute Press, Dearborn, MI.
    35.Taguchi. G. (1991b). Taguchi Methods, Signal-to-Noise Ratio for Quality Evaluation Vol. 3. American Suppliers Institute Press, Dearborn, MI.
    36.Warm, J. S. (1984). An introduction to vigilance. In J. S. Warm (ed.), Sustained attention in human performance (pp. 1-14). New York: Wiley.
    37.Wei, Z. G. (1998). A quantitative measure for degree of automation and its relation to system performance and mental load, Human Factors, 40(2), 277-295.
    38.Welford, A. T. (1968). Fundamentals of skill, Methuen, London.
    39.Wickens, C. D. (1992). Engineering psychology and human performance. New York: HarperCollins.
    40.Wiener, E. L. (1980). Fight – Deck Automation: Promise and Problems. Ergonomics, 23(10), 995-1011.
    41.Zhang, H. C. and Huq, M. E. (1992), Tolerancing techniques: the state-of-the-art, International Journal of Production Research, 30(9), 2111-2135.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE