簡易檢索 / 詳目顯示

研究生: 蕭任宸
Hsiao, Jen-Chen
論文名稱: 結合Google路線規劃與街景資料之腳踏車導航系統
Smart Bike Navigation System using Google's Direction and Street View Data
指導教授: 朱宏國
Chu, Hung-Kuo
口試委員: 姚智原
王昱舜
王浩全
李潤容
學位類別: 碩士
Master
系所名稱:
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 48
中文關鍵詞: 腳踏車導航街景
外文關鍵詞: bike navigation, street view
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著行動裝置與3G/4G 無線網路技術的普及,越來越多人會在外出時使用導航App
    來替自己尋路。然而市面上導航軟體為了能讓使用者充分掌握狀況,時常會在螢幕上展示過多資訊於單一畫面中。這種資訊呈現的方式,在使用者不方便長時間觀看螢幕的情境下,極可能會造成導航上的困擾。例如在開車、騎機車或腳踏車時,使用者通常無法分心在導航畫面上數秒,否則容易發生交通事故。在翻閱過去相關領域的研究後,我們發現過往的研究多半都專注於汽車或行人的導航情境上,幾乎沒有與腳踏車導航直接相關的研究議題。近年來腳踏車使用人口不斷增加,前往戶外遊玩時採用腳踏車做為代步工具的機會隨之大幅提升。因此適用於腳踏車情境的導航軟體,將成為極具應用潛力的日常工具。有鑒於此,我們在本研究中試圖開發一款,能讓腳踏車使用者在騎乘情境下可以快速理解的導航資訊的導航系統,期待減少腳踏車使用者耗費於導航上的時間與心力。我們藉由觀察使用者在腳踏車情境下,使用行人導航系統會出現的問題,來作為設計腳踏車導航時,應該注意的設計重點,並且針對這些問題進行我們的導航互動設計。在系統內部資料的取得
    方面,我們借助於Google 的路線規劃與街景資料服務。我們的系統在取得使用者的導航路徑、當前位置之街景圖面,以及該點周遭的3D 場景資訊後,將透過一連串的資料處理程序,將導航資訊直接視覺化於街景圖片上,並搭配行進中的語音提示訊息,以期打造讓腳踏車使用者輕鬆使用之導航工具


    As mobile device and 3G/4G service become more and more popular, people would more likely to use apps for navigation. But the well known commercial navigating apps usually put lots of information on single 2D bird-eye view to make sure users got all the
    information they may need. It will follow by some distracting and inconvenience when users are not allowed to see the mobile screen for a while, such as driving, riding, and bicycling, or
    it would result in accidents. We found the studies in recent years mostly focus on driving or walking scenario, few of them talk about bicycling scenario. Considering bicycling become a
    popular choice nowadays and the chance people choose bicycling outside grows, a navigation system designed for bike user is becoming a potential service. In this study, we try to develop
    a easy-to-understand navigation system for bicycling users to reduce the time wasted on finding their way and less distracting. We run pilot studies to find the problems happened
    when users use pedestrian navigation solution (Google Map in pedestrian mode) while they are biking, and design an interaction mode to solve these problems. We use the data provided by Google Direction service and Google street view API. Our system parse the
    direction data, street view image and 3D information of the nearby panorama, and then visualize the navigation information on the street view which shares the similar direction of user’ sight after a series of data processing, and play voice instructions when users are reaching decision points, hope to make a easy navigation experience for the bike users.

    目錄 中文摘要 i Abstract ii 目錄 iii 圖目錄 v 1 緒論 1 2 相關研究 3 3 前導實驗與系統設計 7 3.1 前導實驗內容與觀察 7 3.2 系統設計 8 4 系統概觀 10 5 資料接收與內部處理 12 5.1 Google street view API 12 5.1.1 帶有3D 場景資訊之全景深度圖 12 5.1.2 實地街景影像 13 5.2 Google direction service 14 5.3 生成導航方向指示圖示之3D 空間座標 15 5.3.1 直接生成方向指示路徑 15 5.3.2 平移高度值至最近點高度 16 5.4 擺放方向指示圖示並投影 18 5.5 投影結果範例 18 6 系統限制 21 6.1 鄰近街口之誤判 21 6.2 彎曲道路之方向指示問題 21 7 系統原型 24 7.1 行動裝置介面 24 7.2 開始導航 25 7.3 接收訊息 26 7.4 重播訊息 26 7.5 重新上傳目的地 26 7.6 抵達目的地 27 8 系統驗證與實驗設計 29 8.1 實驗目的與實驗假設 29 8.1.1 對應導航資訊與真實街道(H1) 30 8.1.2 是否令使用者更能專注於路況(H2) 31 8.2 問卷內容 32 9 實驗結果與討論 34 9.1 實驗數據結果 34 9.1.1 統計結果概述 35 9.2 實驗結果討論 38 9.2.1 對應導航資訊與真實街道:H1 之檢驗 38 9.2.2 是否令使用者更能專注於路況:H2 之檢驗 41 9.2.3 對行動裝置之操作與原因 41 9.2.4 受測者對轉彎提示之偏好 42 9.2.5 應展示之導航資訊量 42 9.2.6 街景圖片之顯示 42 10 未來工作 44 10.1 改進系統易用性 44 10.2 加入空間認知資料與標註系統 44 10.3 修正彎曲路段問題 45 11 結論 46

    [1] Peter Froehlich, Raimund Schatz, Peter Leitner, Stephan Mantler, and Matthias Baldauf. Evaluating realistic visualizations for safety-related in-car information systems. In CHI ’10 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’10, pages 3847–3852, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-930-5. doi: 10.1145/1753846.1754067. URL http://doi.acm.org/10.1145/1753846.1754067.

    [2] Zeljko Medenica, Andrew L. Kun, Tim Paek, and Oskar Palinko. Augmented reality vs. street views: A driving simulator study comparing two emerging navigation aids. In Proceedings
    of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services, MobileHCI ’11, pages 265–274, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0541-9. doi: 10.1145/2037373.2037414. URL http://doi.acm.org/10.1145/2037373.2037414.

    [3] A. Stark, M. Riebeck, and J. Kawalek. How to design an advanced pedestrian navigation system: Field trial results. In 2007 4th IEEE Workshop on Intelligent Data Acquisition and
    Advanced Computing Systems: Technology and Applications, pages 690–694, Sept 2007. doi: 10.1109/IDAACS.2007.4488511.

    [4] Andrew J. May, Tracy Ross, Steven H. Bayer, and Mikko J. Tarkiainen. Pedestrian navigation aids: Information requirements and design implications. Personal Ubiquitous Comput.,
    7(6):331–338, December 2003. ISSN 1617-4909. doi: 10.1007/s00779-003-0248-5. URL http://dx.doi.org/10.1007/s00779-003-0248-5.

    [5] William J Horrey, Christopher D Wickens, and Kyle P Consalus. Modeling drivers’ visual attention allocation while interacting with in-vehicle technologies. Journal of experimental psychology. Applied, 12 2:67–78, 2006.

    [6] Tony Shu-Hsien Wang, Dian Tjondronegoro, Michael Docherty, Wei Song, and Joshua Fuglsang. A recommendation for designing mobile pedestrian navigation system in university campuses. In Proceedings of the 25th Australian Computer-Human Interaction Conference:Augmentation, Application, Innovation, Collaboration, OzCHI ’13, pages 3–12, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2525-7. doi: 10.1145/2541016.2541039. URL http://doi.acm.org/10.1145/2541016.2541039.

    [7] Ioannis Giannopoulos, Peter Kiefer, and Martin Raubal. Gazenav: Gaze-based pedestrian navigation. In Proceedings of the 17th International Conference on Human-Computer Interaction
    with Mobile Devices and Services, MobileHCI ’15, pages 337–346, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3652-9. doi: 10.1145/2785830.2785873. URL http://doi.acm.org/10.1145/2785830.2785873.

    [8] Shao-Pin Chang, Jui-Ting Chien, Fu-En Wang, Shang-Da Yang, Hwann-Tzong Chen, and Min Sun. Extracting Driving Behavior: Global Metric Localization from Dashcam Videos in the Wild, pages 136–148. Springer International Publishing, Cham, 2016. ISBN 978-
    3-319-46604-0. doi: 10.1007/978-3-319-46604-0_10. URL http://dx.doi.org/10.1007/978-3-319-46604-0_10.

    無法下載圖示 全文公開日期 2022/09/04 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE