研究生: |
蕭任宸 Hsiao, Jen-Chen |
---|---|
論文名稱: |
結合Google路線規劃與街景資料之腳踏車導航系統 Smart Bike Navigation System using Google's Direction and Street View Data |
指導教授: |
朱宏國
Chu, Hung-Kuo |
口試委員: |
姚智原
王昱舜 王浩全 李潤容 |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 48 |
中文關鍵詞: | 腳踏車導航 、街景 |
外文關鍵詞: | bike navigation, street view |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著行動裝置與3G/4G 無線網路技術的普及,越來越多人會在外出時使用導航App
來替自己尋路。然而市面上導航軟體為了能讓使用者充分掌握狀況,時常會在螢幕上展示過多資訊於單一畫面中。這種資訊呈現的方式,在使用者不方便長時間觀看螢幕的情境下,極可能會造成導航上的困擾。例如在開車、騎機車或腳踏車時,使用者通常無法分心在導航畫面上數秒,否則容易發生交通事故。在翻閱過去相關領域的研究後,我們發現過往的研究多半都專注於汽車或行人的導航情境上,幾乎沒有與腳踏車導航直接相關的研究議題。近年來腳踏車使用人口不斷增加,前往戶外遊玩時採用腳踏車做為代步工具的機會隨之大幅提升。因此適用於腳踏車情境的導航軟體,將成為極具應用潛力的日常工具。有鑒於此,我們在本研究中試圖開發一款,能讓腳踏車使用者在騎乘情境下可以快速理解的導航資訊的導航系統,期待減少腳踏車使用者耗費於導航上的時間與心力。我們藉由觀察使用者在腳踏車情境下,使用行人導航系統會出現的問題,來作為設計腳踏車導航時,應該注意的設計重點,並且針對這些問題進行我們的導航互動設計。在系統內部資料的取得
方面,我們借助於Google 的路線規劃與街景資料服務。我們的系統在取得使用者的導航路徑、當前位置之街景圖面,以及該點周遭的3D 場景資訊後,將透過一連串的資料處理程序,將導航資訊直接視覺化於街景圖片上,並搭配行進中的語音提示訊息,以期打造讓腳踏車使用者輕鬆使用之導航工具
As mobile device and 3G/4G service become more and more popular, people would more likely to use apps for navigation. But the well known commercial navigating apps usually put lots of information on single 2D bird-eye view to make sure users got all the
information they may need. It will follow by some distracting and inconvenience when users are not allowed to see the mobile screen for a while, such as driving, riding, and bicycling, or
it would result in accidents. We found the studies in recent years mostly focus on driving or walking scenario, few of them talk about bicycling scenario. Considering bicycling become a
popular choice nowadays and the chance people choose bicycling outside grows, a navigation system designed for bike user is becoming a potential service. In this study, we try to develop
a easy-to-understand navigation system for bicycling users to reduce the time wasted on finding their way and less distracting. We run pilot studies to find the problems happened
when users use pedestrian navigation solution (Google Map in pedestrian mode) while they are biking, and design an interaction mode to solve these problems. We use the data provided by Google Direction service and Google street view API. Our system parse the
direction data, street view image and 3D information of the nearby panorama, and then visualize the navigation information on the street view which shares the similar direction of user’ sight after a series of data processing, and play voice instructions when users are reaching decision points, hope to make a easy navigation experience for the bike users.
[1] Peter Froehlich, Raimund Schatz, Peter Leitner, Stephan Mantler, and Matthias Baldauf. Evaluating realistic visualizations for safety-related in-car information systems. In CHI ’10 Extended Abstracts on Human Factors in Computing Systems, CHI EA ’10, pages 3847–3852, New York, NY, USA, 2010. ACM. ISBN 978-1-60558-930-5. doi: 10.1145/1753846.1754067. URL http://doi.acm.org/10.1145/1753846.1754067.
[2] Zeljko Medenica, Andrew L. Kun, Tim Paek, and Oskar Palinko. Augmented reality vs. street views: A driving simulator study comparing two emerging navigation aids. In Proceedings
of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services, MobileHCI ’11, pages 265–274, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0541-9. doi: 10.1145/2037373.2037414. URL http://doi.acm.org/10.1145/2037373.2037414.
[3] A. Stark, M. Riebeck, and J. Kawalek. How to design an advanced pedestrian navigation system: Field trial results. In 2007 4th IEEE Workshop on Intelligent Data Acquisition and
Advanced Computing Systems: Technology and Applications, pages 690–694, Sept 2007. doi: 10.1109/IDAACS.2007.4488511.
[4] Andrew J. May, Tracy Ross, Steven H. Bayer, and Mikko J. Tarkiainen. Pedestrian navigation aids: Information requirements and design implications. Personal Ubiquitous Comput.,
7(6):331–338, December 2003. ISSN 1617-4909. doi: 10.1007/s00779-003-0248-5. URL http://dx.doi.org/10.1007/s00779-003-0248-5.
[5] William J Horrey, Christopher D Wickens, and Kyle P Consalus. Modeling drivers’ visual attention allocation while interacting with in-vehicle technologies. Journal of experimental psychology. Applied, 12 2:67–78, 2006.
[6] Tony Shu-Hsien Wang, Dian Tjondronegoro, Michael Docherty, Wei Song, and Joshua Fuglsang. A recommendation for designing mobile pedestrian navigation system in university campuses. In Proceedings of the 25th Australian Computer-Human Interaction Conference:Augmentation, Application, Innovation, Collaboration, OzCHI ’13, pages 3–12, New York, NY, USA, 2013. ACM. ISBN 978-1-4503-2525-7. doi: 10.1145/2541016.2541039. URL http://doi.acm.org/10.1145/2541016.2541039.
[7] Ioannis Giannopoulos, Peter Kiefer, and Martin Raubal. Gazenav: Gaze-based pedestrian navigation. In Proceedings of the 17th International Conference on Human-Computer Interaction
with Mobile Devices and Services, MobileHCI ’15, pages 337–346, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3652-9. doi: 10.1145/2785830.2785873. URL http://doi.acm.org/10.1145/2785830.2785873.
[8] Shao-Pin Chang, Jui-Ting Chien, Fu-En Wang, Shang-Da Yang, Hwann-Tzong Chen, and Min Sun. Extracting Driving Behavior: Global Metric Localization from Dashcam Videos in the Wild, pages 136–148. Springer International Publishing, Cham, 2016. ISBN 978-
3-319-46604-0. doi: 10.1007/978-3-319-46604-0_10. URL http://dx.doi.org/10.1007/978-3-319-46604-0_10.