簡易檢索 / 詳目顯示

研究生: 賴成孝
Chen-Hsiao Lai
論文名稱: 一百奈米以下高介電常數閘絕緣層金氧半場效電晶體之邊緣導致能障下降效應
Fring-Induced-Barrier-Lowing (FIBL) Effect in Sub-100nm MOSFETs with High-K Gate Dielectric
指導教授: 金雅琴
Ya-Chin King
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
中文關鍵詞: 高介電常數閘絕緣層邊緣導致能障下降
外文關鍵詞: High-K, Gate Dielectric, FIBL
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 最近幾年來,半導體產業快速的被研發與進步著,且進步的速度在這三十多年來一直被莫爾定律所支配著,一般相信在未來十年內還是會繼續遵守這個定律。而由於通道長度的縮小,為了確保閘極對通道仍有良好的控制能力而不會因短通道效應而變差,於是閘二氧化矽介電層厚度也必須相對的變薄。根據近年來的半導體產業發展藍圖,當閘通道長度縮短到0.07微米以下後,我們所需要的閘二氧化矽介電層厚度必須要小於1.5奈米,並在未來的幾年內將投入生產。這樣超薄的二氧化矽介電層厚度下,當閘極電壓操作在1伏特時,閘極漏電流將超過1A/cm2,這樣大的漏電流對許多應用尤其是邏輯電路可能是不被允許的。所以為了解決超薄閘二氧化矽介電層所帶來的問題又要保有它的好處,所以必須尋找一些新較高的介電常數介電層材料來替代傳統閘二氧化矽介電材料。但是最近幾年的研究顯示,在深次微米元件使用High-K閘介電材料時,將遭遇到由閘極到汲極或源極邊緣區域電場所引起的短通道效應。在本篇論文的研究中,提出對於閘堆疊結構且通道長度為50nm元件以下,進行以模擬為基礎的分析研究。研究中將發現一些幾何參數如閘長度、介面深度以及側壁寬度對於邊緣導致能障下降的影響。並且本論文將提出一新的閘堆疊結構,可以有效的解決使用High-K材料所導致的不理想的效應。


    Recently studies have shown that by adapting high-K gate dielectric, deep sub-micron MOSFET suffers short channel effect caused by the fringing electric fields from gate to source/drain regions. In this work, a simulation-based analysis of multiple gate stack structure with channel length as short as 50nm is presented. The geometry effect such as gate length, junction depth and spacer width on fringing - induced - barrier - lowing (FIBL) is studied. The new stake gate structure can be optimized for reducing the undesirable fringing induced barrier lowing effect of high-K gate dielectric MOSFETs.

    摘要……………………………………………………………………………II 英文要………………………………………………………………………III 誌謝…………………………………………………………………………IV 目錄……………………………………………………………………………V 附圖目錄……………………………………………………………………VII 附表目錄……………………………………………………………………IX 第一章 緒論……………………………………………………………………1 第二章 邊緣導致能障下降之發展與回顧……………………………………3 2.1 閘極介電層電流產生的機制……………………………………………3 2.1.1通道熱載子注入…………………………………………………………3 2.1.2 富勒-諾德漢穿透………………………………………………………4 2.1.3 直接穿透………………………………………………………………5 2.2 邊緣導致能障下降之介紹………………………………………………6 2.2.1 High-K閘介電絕緣體元件之電流特性………………………………6 2.2.2 解決邊緣導致能障下降的方法………………………………………7 第三章 模擬軟體與模擬結構介紹…………………………………………21 3.1 模擬軟體介紹…………………………………………………………21 3.2 模擬結構介紹…………………………………………………………23 第四章 模擬結果與討論……………………………………………………28 4.1 幾何參數變化和FIBL效應之關係……………………………………28 4.1.1 閘極長度和FIBL的關係………………………………………………28 4.1.2 介面深度和FIBL的關係………………………………………………29 4.1.3 側壁寬度和FIBL的關係………………………………………………29 4.2 High-閘堆疊結構的FIBL效應…………………………………………30 4.2.1 下層K 值固定並改變上層K值………………………………………30 4.2.2 上層K 值固定並改變下層K值………………………………………31 4.2.3 High-K元件之閘堆疊直接穿透電流研究與討論…………………32 4.3 SOI結構之FIBL效應的研究與討論……………………………………34 4.3.1 模擬元件結構介紹…………………………………………………34 4.3.2 模擬結果與討論……………………………………………………35 第五章 結論…………………………………………………………………57 參考文獻………………………………………………………………………58

    【1】Bondyopadhyay, P.K., “Moore's law governs the silicon revolution” proceedings of the IEEE, Vol. 86, p.78-81, Jan. 1998.
    【2】Borkar. S., “Obeying moore's law beyond 0.18 micron” ASIC/SOC Conference, p26-31, 2000.
    【3】Yuan Taur; Nowak, E.J.,“CMOS devices below 0.1um, how high will performance go ?” IEDM Tech. Dig., p.215-218, 1997.
    【4】S.A.Campbell, D.C. Gilmer, X.-C Wang, M.-T. Hsieh., H.-S. Kim, W.L. Gladfelter, and J.Yan, “MOSFET transistors fabricated with high permittivity TiO2 dielectrics,” IEEE Trans. Electron Devices, vol. 44, p.104, Jan. 1997.
    【5】Y . Jeon, B. H. Lee, K. Zawadzki, W-J. Qi, A. Lucas, R. Nieh, and J. C. Lee, “Effect of barrier layer on the electrical and reliability characteristics of high-k gate dielectric films,” IEDM Tech. Dig. , p.797, 1998.
    【6】S.Tam, P.K.Ko, and C.Hu, “Lucky-Electron Model of Channel Hot-Electron Injection in MOSFET’s”, IEEE Trans. Electron Devices, Vol.Ed-31, No.9 pp.1116- 1125, Sept. 1984.
    【7】Buchanan, D.A and Lo, S.-H “ Reliability and integration of ultra-thin gate dielectrics for advanced CMOS” Microelectron. Eng., 1997, 36, pp.13-20.
    【8】H.S. Momose , M. Ono, T. Yoshitomi, T. Ohguro, S.-I. Nakamura, M. Saito, and H. Iwai,“1.5nm direct-tunneling gate oxide Si MOSFETs, IEEE Trans. Electron Devices, vol. 43, p.1233, Aug.1996.
    【9】Chenming Hu “Gate oxide scaling limits and projection” IEDM Tech. Dig., p.319-322, 1996.
    【10】Yeap, G.C.-F.; Krishnan, S.; Ming-Ren Lin “Fringing-induced barrier lowering (FIBL) in sub-100 nm MOSFETs with high-K gate dielectrics” Electronics Letters , Vol.34: 11, p.1150-1152, May 1998
    【11】Cheng, B.; Cao, M.; Vande Voorde, P.; Greene, W.; Stork, H.; Yu, Z.; Woo, J.C.S. “Design Considerations of High-K Gate Dielectric for sub-0.1-μm MOSFET’s” Electron Devices, IEEE Trans. on, Vol.46, p.261-262, Jan. 1999
    【12】Kencke, D.L.; Chen, W.; Wang, H.; Mudanai, S.; Ouyang, Q.; Tasch, A.; Banerjee, S.K. “Source-side barrier effects with very high-K dielectrics in 50 nm Si MOSFETs” Device Research Conference Digest, p.22-23, 1999.
    【13】TMA MEDICI & Tsuprem4:Two-dimensional device simulation program(ver.2000.2.0), Technology Modeling Associates, Inc.
    【14】Mudanai, S.; Fan, Y.-Y.; Ouyang, Q.; Tasch, A.F.; Register, F.; Kwong, D.L.; Banerjee, S. “Modeling of direct tunneling current through gate dielectric stacks” Simulation of Semiconductor Processes and Devices, p.200-203, 2000.
    【15】Mudanai, S.; Yang-Yu Fan; Qiqing Ouyang; Tasch, A.F.; Banerjee, S.K “Modeling of direct tunneling current through gate dielectric stacks” Electron Devices, IEEE Transactions on, Vol.47, p. 1851-1857, Oct. 2000
    【16】Yuan Taur and Tak H. Ning “ Fundamentals of Modern VLSI Devices” Cambridge University Press, P.142, 1998.
    【17】Tiwari, S.; Welser, J.J.; Solomon, P.M. “Straddle-gate transistor: changing MOSFET channel length between off and on-state towards achieving tunneling-defined limit of field-effect” IEDM Tech. Dig. , p.137-140 1998.
    【18】Tiwari, S.; Welser, J.J.; Kumar, A.; Cohen, S. “Straddle gate transistors: high Ion/Ioff transistors at short gate lengths” Device Research Conference Digest, p.26-27, 1999.
    【19】Wong, H.-S.P.; Frank, D.J.; Solomon, P.M. “Device design considerations for double-gate, ground-plane, and single-gated ultra-thin SOI MOSFET's at the 25 nm channel length generation “IEDM Tech. Dig., p.407-410, 1998.
    【20】Yeap, G.C.-F.; Krishnan, S.; Yu, B.; Xiang, Q.; Lin, M.-R. “Implications of gate stack scaling in sub-100 nm CMOS speed and reliability “ Device Research Conference Digest, p. 16-17, 1998.
    【21】Ghani, T.; Mistry, K.; Packan, P.; Thompson, S.; Stettler, M.; Tyagi, S.; Bohr, M. “Scaling challenges and device design requirements for high performance sub-50 nm gate length planar CMOS transistors” VLSI Technology, 2000. Digest of Technical Papers. p. 174-175, 2000

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE