研究生: |
李鎮宇 Chen-Yu Lee |
---|---|
論文名稱: |
使用智慧型代理人的語意基礎影像檢索系統 Semantic Based Image Annotation and Retrieval Systems Using Intelligent Agents |
指導教授: |
蘇豐文
Von-Wun Soo |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2005 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 180 |
中文關鍵詞: | 語意網 、智慧型代理人 、本體論 、影像檢索 |
外文關鍵詞: | Semantic Web, Intelligence Agent, Ontology, Image retrieval |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前,在影像檢索系統(Image retrieval system) 的發展上大致可分為兩大類,基於關鍵字的影像檢索系統(Keyword-based image retrieval system) 與基於內容分析的影像檢索系統(content-based image retrieval system) 。其中,雖然關鍵字的影像檢索系統已被廣泛使用,但是此兩種影像檢索系統仍然有著低準確性(low retrieval precision)與不容易使用等關鍵的問題。為了解決這個問題,我們提出了一個基於語意的影像加註與檢索系統(Semantic-based image annotation and retrieval system) 。
為了建立能夠使用語意的影像檢索系統,我們建構了一個基於語意的影像檢索架構,並且使用了語意網(Semantic Web) 、本體論(Ontology) 、中文詞庫 (Thesaurus) 、基於經驗的推論法(Case-based reasoning) 等相關技術來實現之。但我們亦發現,影像的加註(Annotation)問題將會是影響使用語意影像檢索系統的主要關鍵之一。因此,針對影像加註方面我們也應用了智慧型代理人(Intelligence Agent)的技術與資料探勘(Data mining)的技術來建立加註引導代理人(Annotation Guide Agent)與建構領域常識(Domain commonsense) ,以幫助加註者加註,並亦提出解決衝突(Conflict)問題。最後從一系列的實驗中我們證實了語意影像檢索系統的精確性,確認在代理人的技術下可以幫助加註者在短時間內達成更完整與更正確的加註。
Image retrieval (IR) research has been ongoing for sometime. Two major paradigms in IR are developed respectively: Keyword-based metadata image retrieval and content-based image retrieval. The low retrieval precision and the difficulty of formulating an exact feature query are the major drawbacks of these approaches. To overcome these drawbacks, we propose a semantic-based image annotation and retrieval approach. In other words, we annotate images to be retrieved with semantic tags in a standard and uniform representation (RDF) that are defined and derived from thesaurus and domain concepts called domain ontology in form of OWL, so that the information retrieval can be conducted to some extent at the abstract “semantic” level. We also integrated various techniques, such as semantic web, case-based reasoning and complex matching algorithms to establish the system.
Further, we realized that it is a difficult goal to achieve a complete annotation, therefore, we used the technique of intelligent agents to designed an annotator guide agent (AGA), who could guide an annotator to decide what to annotate for an image in a more effective and coherent manner with suggesting critical properties and domain commonsense. We also devised conflict detection patterns based on different data, ontology at different inference levels and proposed the corresponding automatic conflict resolution strategies. Finally, we conducted several experiments to compare the performance of the semantic-based retrieval, AGA, and automatic conflict resolution. The experiments showed that the proposed method improved the performance significantly.
Bibliography
[1] Aha, D. W., Case-based Learning Algorithms, In Proc. of The DARPA Case-Based Reasoning Workshop, Morgan Kaufmann, pp. 147-158, 1991.
[2] Amann, B., and Fundulaki, I., Integrating Ontologies and Thesauri to Build RDF Schemas. In Proc. of Third European Conference ECDL'99, Paris, France, Springer Verlag, pp. 234-253, 1999.
[3] Amgoud, L., and Parsons, S., An Argumentation Framework for Merging Conflicting Knowledge Bases. In Proc. of The European Conference on Logics in Artificial Intelligence table of contents, pp. 27-37, 2002.
[4] Antoniou, G., and Harmelen, F. v., Web Ontology Language: OWL, Handbook on Ontologies, pp.67-92, 2004.
[5] Arai, S., and Sycara, K., Multi-agent Reinforcement Learning for Planning and Conflict Resolution in a Dynamic Domain, In Proc. of The Fourth International Conference on Autonomous Agents Table of Contents, pp. 104-105, 2000.
[6] Aria, http://web.media.mit.edu/~lieber/Lieberary/Aria/Aria-Intro.html.
[7] Aronson, A. R., Demmer, D., Humphrey, S.H., Ide, N.C., Kim, W., Liu, H., Loane, R.R., Mork, J.G., Smith, L.H., Tanabe, L.K., Wilbur, W.J., and Xie, N., Knowledge-intensive and Statistical Approaches to the Retrieval and Annotation of Genomics MEDLINE Citations, In Proc. of The Thirteenth Text Retrieval Conference (TREC 2004), 2004.
[8] Berman, A. and Shapiro, L. G., A Flexible Image Database System for Content-Based Retrieval, Computer Vision and Image Understanding, Vol. 75, Nos. 1-2, pp. 175-195, 1999.
[9] Berners-Lee, T., Hendler, J., and Lassila, O., The Semantic Web, Scientific American, http://www.scientificamerican.com/article.cfm?articleID=00048144- 10D2-1C70-84A9809EC588EF21&catID=2, 2001.
[10] Beroggi, G. E., and Mirchandani, P. B., Negotiation and Equilibria in User Competition for Resources: A Dynamic Plot Approach, Computational and Mathematical Organization Theory, 6(1), 2000.
[11] Bradshaw, B., Semantic based image retrieval: a probabilistic approach, In Proc. of The eighth ACM international conference on Multimedia table of contents, pp. 167-176, 2000.
[12] Cardie, C., Using Decision Trees to Improve Case-Based Learning, In Proc.of The Tenth International Conference on Machine Learning, Morgan Kaufmann, pp. 25-32, 1993.
[13] Carrillo, C. I. P. d., and L□zaro, J. L. M., Adaptive Intelligent Agent Approach to Guide the Web Navigation on the PLAN-G Distance Learning Platform, IEE Colloquium "Lost in the Web - Navigation on the Internet", UK ISSN 0963-3308, November 1999.
[14] Carson, C., Belongie, S., Greenspan, H., and Malik, J., Blobworld, Department of Electrical Engineering and Computer Sciences, University of California at Berkeley, Berkeley CA 94720 , http://elib.cs.berkeley.edu/photos/blobworld/.
[15] Chandrasekaran, B., Josephson, J. R., and Benjamins, V. R., What Are Ontologies, and Why Do We Need Them? IEEE Intelligent Systems, 14(1),pp. 20 – 26, 1999.
[16] Chen, C. C., The First Emperor of China, CD-ROM, Voyager, 1991.
[17] Chen, C. C., and Wang, J. Z., Large-scale Emperor Digital Library and Semantics-sensitive Region-based Retrieval, In Proc. of The International Conference on Digital Library - IT Opportunities and Challenges in the New Millennium, National Library of China, Beijing, China, pp. 454-462, 2002.
[18] Chen, D., Yang, J., and Malkin, R., Multimodal Detection of Human Interaction Events in a Nursing Home Environment, In Proc. of Sixth International Conference on Multimodal Interfaces (ICMI'04), Penn State University, State College, PA, October 14-15, 2004.
[19] Chen, D., and Yang, J., Online Learning Region Confidences for Object Tracking, In Proc. of the Second Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, in conjunction with the Tenth IEEE International Conference on Computer Vision (ICCV'05), Beijing, China, October 15-16, 2005.
[20] Chen, Y. J., & Soo, V. W., Ontology-based Information Gathering Agents, In Proc. of Web Intelligence, pp. 423-427, 2001.
[21] Chomicki, J., Lobo, J., and Naqvi, S., A Logic Programming Approach to Conflict Resolution in Policy Management, In Proc. of 7th International Conference on Principles of Knowledge Representation and Reasoning (KR'2000), pp.121-132, 2000.
[22] Chomicki, J., Lobo, J., and Naqvi, S., Conflict Resolution using Logic Programming, IEEE Transactions on Knowledge and Data Engineering, 15(1), pp. 244-249, 2003.
[23] CIRES: Content Based Image REtrieval System, http://amazon.ece.utexas.edu /~qasim/research.htm
[24] CMU, Informedia, http://www.informedia.cs.cmu.edu/.
[25] Cranefield, S., Networked Knowledge Representation and Exchange using UML and RDF, Journal of Digital Information, 1(8), 2001.
[26] DARPA. The DARPA Agent Markup Language Homepage, http://www.daml.org/.
[27] Deb, S., Multimedia Systems and Content-Based Image Retrieval, Idea Group Publishing, 2004.
[28] Decker, S., Hamelen, F. v., Broekstra, J., Erdmann, M., Fensel, D., Horrocks, I., Klein, M., and Melnik, S., The Semantic Web - on the Roles of XML and RDF, IEEE Internet Computing, 4(5), pp. 63-74, 2000.
[29] Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., and Harshman, R.A., Indexing by Latent Semantic Analysis, Journal of the American Society for Information Science, 41(6), pp. 391-407, 1990.
[30] Department of Computer Science and Engineering, University of Washington, Object and Concept Recognition for Content-Based Image Retrieval, http://www.cs.washington.edu/research/imagedatabase/
[31] Dietrich, J., Kozlenkov, A., Schroeder, M., and Wagner, G., Rule-Based Agents for the Semantic Web, Electronic Commerce Research and Applications, 2(4), pp. 323-338, 2003.
[32] Doan, A., Madhavan, J., Domingos, P., and Halevy, A., Learning to Map between Ontologies on the Semantic Web, In Proc. of the Eleventh International Conference on World Wide Web, pp. 07-11, 2002.
[33] Dumais, S.T., Letsche, T.A., Littman, M.L., and Landauer, T.K., Automatic Cross-Language Retrieval Using Latent Semantic Indexing, Working Notes of AAAI-97 Spring Symposiums on Cross-Language Text and Speech Retrieval, pp.18-24, 1997.
[34] Fensel, D., Horrocks, I., Harmelen, F. v., McGuinness, D. L., and Patel-Schneider, P.F., OIL: An Ontology Infrastructure for the Semantic Web, IEEE Intelligent Systems, 16(2), pp. 38-45, 2001.
[35] Ferres, D., Kanaan, S., Gonzalez, E., Ageno, A., Rodriguez, H., Surdeanu, M., and Turmo, J., TALP-QA System at TREC 2004: Structural and Hierarchical Relaxation Over Semantic Constraints, In Proc. of The Thirteenth Text Retrieval Conference (TREC 2004), 2004.
[36] Fleming, M., and Cohen, R., User Modeling in the Design of Interactive Interface Agents, In Proc. of 7-th International Conference on User Modeling, pp.067-076, 1999.
[37] Google, http://www.google.com.
[38] Grosof, B. N., Courteous Logic Programs: Prioritized Conflict Handling for Rules. IBM Research Report RC 20836, Dec. 30, 1997.
[39] Han, J., and Kamber, M., Data Mining Concepts and Techniques, Morgan Kaufmann publishers, 2000.
[40] Harabagiu, S., Moldovan, D., Clark, C., Bowden, M., Williams, J., and Bensley, J., Answer Mining by Combining Extraction Techniques with Abductive Reasoning, In Proc. of The Twelfth Text Retrieval Conference (TREC 2003), pp. 375-382, 2003.
[41] Hendler, J., Berners-Lee, T., and Miller, E., Integrating Applications on the Semantic Web, Journal of the Institute of Electrical Engineers of Japan, 122(10), pp. 676-680, 2002.
[42] Horrocks, I., Patel-Schneider, P. F., and Harmelen, F. v., Reviewing the Design of DAML+OIL: An Ontology Language for the Semantic Web. AAAI/IAAI, pp. 792-797, 2002.
[43] Hou, W. J., Teng, C. Y., Lee, C., and Chen, H. H., SVM Approach to GeneRIF Annotation, In Proc. of The Twelfth Text Retrieval Conference (TREC 2003), pp. 468-473, 2003.
[44] Huibers, T., and Linder, B. v., Intelligent information retrieval agents, Microengineering in Optics and Optoelectronics (Ref. No. 1999/187), IEE Colloquium on , pp. 51-59, 1999.
[45] IBM, Qbic, http://wwwqbic.almaden.ibm.com/
[46] ImageMiner, http://www.aa-lab.cs.uu.nl/cbirsurvey/cbir-survey/node20.html.
[47] Iqbal, Q. and Aggarwal, J.K., Image Retrieval via Isotropic and Anisotropic Mapping, in IAPR Workshop on Pattern Recognition in information system, pp. 34-49, 2001.
[48] Lee, C., Hou, W. J., and Chen, H. H., Identifying Relevant Full-text Articles for GO Annotation without MeSH Terms, In Proc. of The Thirteenth Text Retrieval Conference (TREC 2004), 2004.
[49] Lee, C., and Lee, G. G., Probabilistic Information Retrieval Model for a Dependency Structured Indexing System, Information Processing and Management, 41(2), pp. 161-175, 2005.
[50] Lee, C. Y., and Soo, V. W., The Conflict Detection and Resolution in Knowledge Merging for Image Annotation, accepted for publication in International Journal of Information Processing & Management.
[51] Lee, C. Y., and Soo, V. W., Ontology-based Information Retrieval and Extraction. In Proc. of 3rd International Conference on Information Technology: Research and Education (ITRE2005), 2005.
[52] Lee, C. Y., and Soo, V. W., Modeling Annotators to Improve Semantic Annotation and Retrieval of Images, In Proc. of The 2005 IEEE/WIC/ACM International Conference on Intelligent Agent Technology, pp.254-257, 2005.
[53] Lee, C. Y., Soo, V. W., Fu, Y. T., How to Annotate an Image?: the Need of an Image Annotation Guide Agent, In Proc. of ACM/IEEE International Joint Conference of Digit al Library (JCDL 2004), pp. 394, (2004).
[54] Lee, C. Y., Soo, V. W., Fu, Y. T., An Image Annotation Guide Agent, Seventh Pacific Rim International Workshop on Multi-Agents (PRIMA2004), pp. 148-161, 2004.
[55] Lieberman, H., Common Sense Reasoning for Interactive Applications, MIT Media Lab Course, http://web.media.mit.edu/~lieber/Teaching/Common-Sense- Course-02/Common-Sense-Course-Intro.html, 2002.
[56] Lieberman, H., Liu, H., Singh, P., and Barry, B., Beating some Common Sense into Interactive Applications. To appear AI Magazine, 2004.
[57] Likhachev, M., Kaess, M., and Arkin, R. C., Learning Behavioral Parameterization Using Spatio-Temporal Case-Based Reasoning, In Proc. of The IEEE International Conference on Robotics and Automation (ICRA), Vol. 2, pp. 1282-1289, 2002.
[58] Lin, C. C., Incremental Learning in Understanding Images based on Ontology and Canonical Object, Master thesis of National Tsing Hua University. 2004.
[59] Lin, J., Fernandes, A., Katz, B., Marton, G., and Tellex, S., Extracting Answers from the Web Using Knowledge Annotation and Knowledge Mining Techniques, In Proc. of The Eleventh Text Retrieval Conference (TREC 2002), 2002.
[60] Lin, S. W., Ontology-based Automaticed Image Annotation, Master thesis of National Tsing Hua University. 2005.
[61] Linton, F., Joy, D., and Schaefer, H.-P., Building User and Expert Models by Long-Term Observation of Application Usage, In Proc. of 7-th International Conference on User Modeling, pp.129-138, 1999.
[62] Liu, J. S., Soo, V. W., Chiang, C. N., Lee, C. Y., and Lin, C. Y., Gaz-Guide: Agent-Mediated Information Retrieval for Official Gazettes, In AI Lecture Note Series, Springer , in Proc. of PRIMA, pp. 154-167, 2001.
[63] Liu, H., and Lieberman, H., Robust Photo Retrieval Using World Semantics, In Proc. of Third International Conference on Language Resources and Evaluation, 2002.
[64] Liu, H., and Singhm P., OMCSNet: A Commonsense Inference Toolkit, MIT Media Lab Technical Report SOM03-01, http://web.media.mit.edu/~push/ OMCSNet.pdf, 2003.
[65] McGuinness, D. L., and Harmelen, F. V., OWL Web Ontology Language Overview, W3C Candidate Recommendation, http://www.w3.org/TR/2003/ CR-owl-features- 20030818/, 2003.
[66] MIT, Photobook, http://vismod.media.mit.edu/vismod/demos/photobook/.
[67] Mockus, A. and Herbsleb, J., Expertise browser: A quantitative approach to identifying expertise, In Proc. of ICSE '02 Workshop on Open Source Software Engineering, Orlando, FL, USA, 2002.
[68] Motik, B., and Glavinic, V., Enabling Agent Architecture through an RDF Query and Inference Engine, In Proc. of 10th Mediterranean Electro-technical Conference, 2000.
[69] Muller, W. and Muller, H., MRML: A Communication Protocol for Content-Based Image Retrieval, Tech. Rep. 01.01, University of Geneva, 2001.
[70] Museum of Qin shihuang, The museum of Qin shihuang terra-cotta warrior and horses, http://www.bmy.com.cn/.
[71] Noy, N.F., Sintek, M. and Decker, S., Creating Semantic Web Contents with Protege-2000, IEEE Intelligent Systems, 16(2), pp.60-71, 2001.
[72] Patel-Schneider, P. F., Hayes, P., and Horrocks, I., Web Ontology Language (OWL) Abstract Syntax and Semantics, http://www.w3.org/TR/owl-semantics/, 2004.
[73] Pissinou, N., Snodgrass, R., Elmasri, R., Mumick, I., Ozsu, M., Pernici, B., A., Segev, Theodoulidis, B., and Dayal, U., Towards an Infrastructure for Temporal Databases, ACM Sigmod Record, 23(1), pp. 36-61, 1994.
[74] Prot□g□ 2.0 with OWL Plug-in, http://protege.stanford.edu/.
[75] Racine, K., and Yang, Q., Maintaining Unstructured Case Bases, In Proc. of The 2nd International Conference on Case-Based Reasoning (ICCBR), SpringerVerlag, pp. 553-564, 1997.
[76] Ram, S., and Park, J., Semantic Conflict Resolution Ontology (SCROL): an Ontology for Detecting and Resolving Data and Schema-level Semantic Conflicts, IEEE Transactions on Knowledge and Data Engineering, 16(2), pp. 189-202, 2004.
[77] Resource Description Framework (RDF) Model and Syntax Specification W3C Recommendation 22, February, http://www.w3.org/RDF/, 1999.
[78] Salton, G., The SMART Retrieval System--Experiments in Automatic Document Processing. Prentice-Hall, Englewood Cliffs, NJ, 1971.
[79] Salton, G., and Buckley, C., Term-weighting Approaches in Automatic Text Retrieval. Information Processing and Management, 24(5), pp.513-523, 1998.
[80] Settles, B., and Craven, M., Exploiting Zone Information, Syntactic Features, and Informative Terms in Gene Ontology Annotation from Biomedical Documents, In Proc. of The Thirteenth Text Retrieval Conference (TREC 2004), 2004.
[81] Shah, U., Finin, T., A. Joshi, R. S. Cost, and J. Mayfield, Information Retrieval on the Semantic Web, In Proc. of Conference on Information and Knowledge Management, McLean, VA., pp. 461-468, 2002.
[82] Sheikholeslami, G., Chang, W., and Zhang, A.: SemQuery: Semantic Clustering and Querying on Heterogeneous Features for Visual Data, IEEE Transaction on Knowledge Data Engineer, 14(5), pp. 988-1002, 2002.
[83] Smeaton, A. F., and Rijsbergen, C. J. V., Information Retrieval in an Office Filing Facility and Future Work in Project Minstrel, Information Processing and Management, 22(2), pp. 135-149, 1986.
[84] Smeulders, A. W. M., Content-Base Image Retrieval at the End of the Early Years, IEEE Transactions on pattern analysis and machine intelligence, 22(12), December, 2000.
[85] Smith, M. K., Welty, C., and McGuinness, D. L., Web Ontology Language (OWL) Guide, http://www.w3.org/TR/owl-guide/, 2004.
[86] Soo, V. W., Lee, C. Y., Lin, C. C., Chen, S. L., and Chen, C. C., Automated Semantic Annotation and Retrieval Based on Sharable Ontology and Case-Based Learning Techniques, In Proc. of ACM/IEEE International Joint Conference of Digit al Library (JCDL 2003), pp. 61-72, 2003.
[87] Soo, V. W., Lee, C. Y., and Lin, C. M, , Answering Simple Historical Questions by Ontology and Semantic Annotated Documents, (Invited) Archives Quarterly, 2(2), pp.23-37, 2003.
[88] Soo, V. W., Lee, C. Y., Yeh, J. J., and Chen, C. C., Using Sharable Ontology to Retrieve Historical Images, In Proc. of ACM/IEEE International Joint Conference of Digit al Library (JCDL 2002), pp. 197-198, 2002.
[89] Soo, V. W., Liu, J. S., and Chiang, C. N., Exploiting Contextual Knowledge for Information Retrieval in a Multiagent-based Digital Library Service System, NIT 2001, Beijing. Global Digital Library Development in the New Millennium: Fertile Ground for Distributed Cross-Disciplinary Collaboration. Ed. by Ching-chih Chen. Beijing: Tsinghua University Press, pp. 299-306, 2001.
[90] Soo, V. W., Liu, J. S., Chiang, C. N., Lee, C. Y., and Lin, C. Y., Agents of Government Official Gazette, ATWORK 2000, 2000.
[91] Staab, S., Erdmann, M., Maedche, A., and Decker, S., An Extensible Approach for Modeling Ontologies in RDF(S), In Proc. of ECDL Workshop on the Semantic Web, pp. 11-22, 2000.
[92] Sun, Y., and Ozawa, S., Semantic-meaningful content-based image retrieval in wavelet domain, In Proc., of The 5th ACM SIGMM international workshop on Multimedia information retrieval table of contents, pp. 122-129, 2003.
[93] Su, S. Y. W., and Chen, H. H. M., Temporal Rule Specification and Management in Object-oriented Knowledge Bases, In Proceedings of The First International Workshop on Rules in Database Systems, Edingburgh, Scotland, August, pp. 73-91, 1993.
[94] Suryadi, D., and Gmytrasiewicz, P. J., Learning Models of Other Agents Using Influence Diagrams, , In Proc. of 7-th International Conference on User Modeling, pp. 223-232, 1999.
[95] Tansel, A. U., Arkun, M. E., and □soyoğlu, G., Time-by-Example Query Language for Historical Databases, IEEE Transactions on Software Engineering, 15(4), pp. 464-478, 1989.
[96] The Text REtrieval Conference (TREC), co-sponsored by the National Institute of Standards and Technology (NIST) and the Defense Advanced Research Projects Agency (DARPA), http://trec.nist.gov/.
[97] The World Wide Web Consortium(W3C), http://www.w3.org/
[98] Tong, R.M., Information Needs and Automatic Queries, In Proc. of The Thirteenth Text Retrieval Conference (TREC 2004), 2004.
[99] Tsai, C. F., McGarry, K., and Tait, J., Qualitative Evaluation of Automatic Assignment of Keywords to Images. Information Processing & Management, In Press, Corrected Proof, Available online 10 December 2004
[100] Tsai, C. F., McGarry, K., and Tait, J., Automatic Metadata Annotation of Images via a Two-level Learning Framework, In Proc. of The ACM SIGIR Workshop on Semantic Web, pp. 32-42, 2004.
[101] University of California, Berkeley, Blobworld Image retrieval using regions, Digital Library Project, http://elib.cs.berkeley.edu/photos/blobworld/.
[102] University of Surrey, SQUID (Shape Queries Using Image Databases), http://www.ee.surrey.ac.uk/Research/VSSP/imagedb/demo.html
[103] Vailaya, A., Figueiredo, M., Jain, A., and Zhang, H. J., Content-Based Hierarchical Classification of Vacation Images, In Proc. of IEEE International Conference on Multimedia Computing and Systems, 1999.
[104] Wang, W., Wu, Y., and Zhang, A.: SemView: A Semantic-sensitive Distributed Image Retrieval System, The National Conference on Digital Government Research (DG.O2003), pp. 318-321, 2003.
[105] Webb, G. I., Pazzani, M. J., and Billsus, D., Machine Learning for User Modeling, User Modeling and User-Adapted Interaction archive, 11(1-2), pp.19-29, 2001.
[106] Yahoo, http://www.yahoo.com.
[107] Zukerman, I. and Albrecht, D. W., Predictive statistical models for user modeling, User Modeling and User-Adapted Interaction, Vol. 11, pp. 5-18, 2001.