研究生: |
巴帝 Pati, Kamalkishore |
---|---|
論文名稱: |
Synthesis of Dibenzo[g,p]chrysenes and Tetrabenzo[de,hi,mn,qr]Naphthacenes Bearing Various Functionalities & Transition Metal Catalyzed Organic Transformations 合成新型多苯環分子:Dibenzo[g,p]chrysenes 與 Tetrabenzo[de,hi,mn,qr] Naphthacenes 及其延伸物 & 過渡金屬催化有機反應的研究 |
指導教授: |
劉瑞雄
Liu, Rai-Shung |
口試委員: |
吳明忠
侯敦仁 蔡易州 廖欣怡 |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 421 |
中文關鍵詞: | 催化 、金 、反應機構 |
相關次數: | 點閱:58 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文共分為四個章節,合成一系列具有不同官能基修飾的Dibenzo[g,p]chrysenes和Tetrabenzo[de,hi,mn,qr]naphthacenes,並探討其物理性質並且利用過渡金屬錯合物催化環化加成以及環化異構化反應,且可作用在多種不同官能基的有機分子上。
第一章節我們發展出利用雙(聯芳香環)炔類化合物合成出一系列具不同官能基修飾的dibenzo[g,p]chrysenes和Tetrabenzo[de,hi,mn,qr]naphthacenes,並對其紫外吸收和螢光放光有一系列的測量。
第二章節我們將利用釕催化環化反應,經由釕乙烯的中間體,將3-en-5-ynyl 和 O-alkynyl phenyl nitrones 環化至 α-pyridones以及3(2H)-isoquinolones分子架構,最後再用氘的同位素標定實驗來證實我們假設的反應機構。
第三章節我們將利用過渡金屬金進行烷基環丙烷氧化擴環的催化反應,而此類反應藉由二苯基硫醚分子當作氧化劑,於三鍵上架構新的酮類官能基,產生環丁烯酮和2H-吡喃,而且此類反應具有高度的位向選擇性。
第四章節報導利用新型銀催化反應,反應由β-keto-2,2-dimethyl cyclopropanes 透過銀催化sp3碳氫鍵的斷裂,成功製備一系列的碳環。
The synthesis of Dibenzo[g,p]chrysenes and Tetrabenzo[de,hi,mn,qr]naphthacenes bearing various functionalities and their physical properties and development of few new methodologies involving transition metal catalysis are mentioned in this dissertation. For sake of convenience and better understanding, the thesis is divided into four chapters. In the first chapter a new synthetic pathway to functionalized dibenzo[g,p]chrysenes and tetrabenzo[de,hi,mn,qr]naphthacenes from bis(biaryl)acetylenes and from 1,2-di(phenan thren-4-yl)ethynes, respectively, has been described. We also presented the properties of dibenzo[g,p]chrysenes and tetrabenzo[de,hi,mn,qr]naphthacenes their UV absorptions, and fluorescent emissions. The second chapter deals with an unprecedented ruthenium-catalyzed cyclization of 3-en-5-ynyl and O-alkynyl phenyl nitrones to α-pyridones and 3(2H)-isoquinolones, respectively, via formation of ruthenium vinylidene intermediate. A plausible mechanism was proposed on the basis of deuterium-labeling experiments. The third chapter describes, a gold-catalyzed oxidative ring expansion of alkynyl cyclopropanes, this approach introduces regioselectively a new ketone functionality using Ph2SO an external oxygen donor to gave cyclobutenyl ketone and 2H-pyran. The fourth chapter presents a novel silver-catalyzed protocol for the synthesis of carbocycles from β-keto-2,2-dimethyl cyclopropanes via cleavage of a sp3 C-H bond.
David J. Gorin, F. Dean Toste Relativistic effects in homogeneous gold catalysis Nature 446, 395. b) Liu, S.; Xiao, J. J. Mol. Catal. A: Chem. 2007, 270, 1.
(2) a) T. V. Hansen, Y. Stenstrom, Organic Synthesis: Theory and Applications; Hudlicky, T., Ed.; Elsevier Science Ltd,; New York, NY, 2001, Vol. 5, pp 1-38; b) V. M. Dembitsky, J. Nat. Med. 2008, 62, 1.
(3) For total syntheses of naturally occurring compounds, see selected examples: a) P. S. Baran, A. L. Zografos, D. P. O’Malley, J. Am. Chem. Soc. 2004, 126, 3726; b) V. B. Birman, X.-T. Jiang, Org. Lett. 2004, 6, 2369; c) P. S. Baran, K. Li, D. P. O’Malley, C. Mitsos, Angew. Chem. 2006, 118, 255; Angew. Chem. Ed. Int. 2006, 45, 249; d) P. S. Baran, J. M. Richter, J. Am. Chem. Soc. 2005, 127, 15394.
(4) a) M. T. Crimmins, Chem. Rev. 1988, 88, 1453; b) D. I. Schuster, G. Lem, N. A. Kaprinidis, Chem. Rev. 1993, 93, 3; c) J. D. Winkler, C. M. Bowen, F. Liotta, Chem. Rev. 1995, 95, 2003; d) N. Hoffman, Chem. Rev. 2008, 108, 1052.
(5) Selected examples: a) K. Inanaga, K. Takasu, M. Ihara, J. Am. Chem. Soc. 2005, 127, 3668; b) Y. Liu, M. Liu, Z. Song, J. Am. Chem. Soc. 2005, 127, 3662; c) E. Canales, E. J. Corey, J. Am. Chem. Soc. 2007, 129, 12686; d) M. Ogasawara, A. Okada, K. Nakajima, T. Takahashi, Org. Lett. 2009, 11, 177; e) T. Shibata, K. Takami, A. Kawachi, Org. Lett. 2006, 7, 1343.
(6) a) A. Fürstner, C. Aïssa, J. Am. Chem. Soc. 2006, 128, 6306; b) M. Shi, L.-P. Liu, J. Tang, J. Am. Chem. Soc. 2006, 128, 7430; c) A. Masarwa, A. Fürstner, I. Marek, Chem. Commun. 2009, 5760; d) ) A. S. K. Hashmi, Angew. Chem. Int. Ed. 2008, 47, 8933.
(7) F. Kleinback, F. D. Toste, J. Am. Chem. Soc. 2009, 131, 9178.
(8) a) B. M. Trost, J. Xie, N. Maulide, J. Am. Chem. Soc. 2008, 130, 17258; b) J. P. Markham, S. T. Staben, F. D. Toste, J. Am. Chem. Soc. 2005, 127, 9708.
(9) S. Ye, Z.-X. Yu, Org. Lett. 2010, 12, 804.
(10) H. Xu, W. Zhang, D. Shu, J. B. Werness, W. Tang, Angew. Chem. 2008, 120, 9065; Angew. Chem. Int. Ed. 2008, 47, 8933.
(11) For Ph2SO-induced redox reactions, see: a) N. D. Shapiro, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 4160; b) C. A. Witham, P. Mauleón, N. D. Shapiro, B. D. Sherry, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 5838; c) G. Li, L. Zhang, Angew. Chem. 2007, 119, 5248; Angew. Chem. Int. Ed. 2007, 46, 5156; d) P. W. Davies, S. J.-C. Albrecht, Chem. Commun. 2008, 238; e) A. B. Cuenca, S. Montserrat, K. M. Hossain, G. Mancha, A. Lledós, M. Medio-Simón, G. Ujaque, G. Asensio, Org. Lett. 2009, 11 , 4906.
(12) For other gold □-carbonylcarbenoids, see : a) A. S. K. Hashmi, M. Rudolph, H.-U. Siehl, M. Tanaka, J. W. Bats, W. Frey, Chem. Eur. J. 2008, 14, 3703; b) B. Martín-Matute, D. J. Cárdenas, A. M. Echavarren, Angew. Chem. Int. Ed. 2001, 40, 4754; c) A. S. K. Hashmi, T. M. Frost, J. W. Bats, J. Am. Chem. Soc. 2000, 122, 11553.
(13) For nitrogen-based oxides, see: a) L. Cui, G. Zhang, Y. Peng, L. Zhang, Org. Lett. 2009, 11 , 1225; b) L. Cui, Y. Peng, L. Zhang, J. Am. Chem. Soc. 2009, 131, 8394; c) H.-S. Yeom, J.-E. Lee, S. Shin, Angew. Chem. 2008, 120, 7148; Angew. Chem. Int. Ed. 2008, 47, 7040; (d) H.-S. Yeom, Y. Lee, J. Jeong, E. So, S. Hwang, J.-E. Lee, S. S. Lee, S. Shin, Angew. Chem. 2010, 122, 1655; Angew. Chem. Ed. Int. Ed. 2010, 49, 1611; e) L. Ye, L. Cui, G. Zhang, L. Zhang, J. Am. Chem. Soc. 2010, 132, 3258; f) L. Ye, W. He, L. Zhang, J. Am. Chem. Soc. 2010, 132, 8550.
(14) G. Ujaque, G. Asensio, Org. Lett. 2009, 11, 4906.
(15) H. Menz, and S. F . Kirsch , Org. Lett. 2006, 8, 4795.
(16) A few attempts to generate metal □-carbonylcarbenoids from intermolecular redox reactions have been reported.[10e,11e,f] Experimental data to support the participation of metal □-carbonylcarbenoids are only known for modified pyridine oxides[11f].
(17) a) C. A. Witham, P. Mauleón, N. D. Shapiro, B. D. Sherry, F. D. Toste, J. Am. Chem. Soc. 2007, 129, 5838; b) P. Mauleón, R. M. Zeldin, A. Z. González, F. D. Toste, J. Am. Chem. Soc. 2009, 131, 6348; c) K.-Y. Lin, C.-W. Li, S.-H. Hung, R.-S. Liu, Org. Lett. 2008, 10, 5059.
(18) In Zhang’s report,[11e,f] effective activity was found for 2-bromopyridium oxide/Brønsted acids in the intermolecular oxidations of alkynes.
(19) a) H.-U. Reissig, In Topics in Current Chemistry; de Meijere, A. Ed.; Springer-Verlag: Heidelberg, Germany, 1991; vol. 144, pp 73-135; b) T. Hirao, D. Misu, T. Agawa, J. Chem. Soc. Chem. Commun. 1986, 26; c) R. K. Bowman, J. S. Johnson, Org. Lett. 2006, 8, 573.