簡易檢索 / 詳目顯示

研究生: 周哲宇
Chou, Che Yue
論文名稱: 利用雙波導製作即時性鋅離子螢光感測器
Fabrication of Real Time Zinc Ion Fluorescence Sensor with Double Waveguide
指導教授: 洪勝富
Horng, Sheng Fu
口試委員: 趙宇強
Chao, Yu Chiang
孟心飛
Meng, Hsin Fei
王倫
Wang, Lon
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 88
中文關鍵詞: 波導鋅離子即時性探針式感測脊髓神經膠細胞
外文關鍵詞: Waveguide, Zinc ion, Real-Time, Sensing tip, Spinal culture of Glial cell
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 探針式雙波導鋅離子感測器是由具有均勻光傳遞之波導效應導光板結合光纖所並行組合而成的。在導光板與光纖接合處上方塗佈薄膜水凝膠材料Poly(2-hydroxyethyl methacrylate) (Poly HEMA)並添加對鋅離子具有高選擇性之感測分子meso-2,6-Dichlorophenyltripyrrinone (TPN-Cl2),以0.025wt%重量百分比之比例加熱均勻混合。首先,需使用激發光源波長為405nm功率為100mW之藍光二極體雷射打入導光板,利用導光板之均勻光傳遞的特性使其與光纖結合處上方之薄膜均勻接收激發光源。該薄膜接收激發光後會在波長約為622nm處發出螢光,並使用core直徑為800µm之光纖收集所散發出之螢光。此感測器可對10-6M以上濃度之鋅離子做出及時性之感測,並可在生物緩衝液Dulbecco’s modified Eagle medium(DMEM)中正常感測。探針式雙波導鋅離子感測器具有堅固結構,不易受到外力影響而造成形變導致感測異常,且製程上簡易、成本較低。利用上述概念實現具有即時性鋅離子螢光感測之效能。並期望未來能真正落實應用於生物醫學界進行活體感測,使鋅離子感測科技更向前邁進一大步。


    Double-waveguide zinc ion sensor combines a light guide plate that has uniformly light-transferring with an optical fiber in parallel. We coat sensing film on the junction between the light guide plate and optical fiber. The sensing film is made from Poly(2-hydroxyethyl methacrylate) which mixed with high selectivity fluorescent probe meso-2,6-Dichlorophenyltripyrrinone. The weight ratio between the two molecular is 0.025 wt%. At first, we use the blue laser diode, which the wavelength is 405 nm and the power is 100mW, as an excitation light source. By using the light guide, the laser can be transferred into the film successfully. After absorbing, the sensing film will be excited and emitting fluorescence. Eventually, the fluorescent light will be coupled into the optical fiber and collected at the other end. The double-waveguide sensor can detect instantly even the concentration of zinc ion with only 10-6M. Moreover, it can sense in Dulbecco’s modified Eagle medium(DMEM) environment. The double-waveguide sensor has a firm structure, so it's not easy to change the shape and to prevent causing abnormal sensing when it faces some force. Besides, the manufacture process of this system is simply and low cost. We use these ideas to achieve the efficacy of real-time zinc ion sensing and some applications in biomedical vivo sensing. Expecting the new kind zinc ion sensor can contribute to the biomedical sensing in vivo or ex vivo.

    中文摘要.............................................................................................................I Abstract...............................................................................................................II 誌 謝...........................................................................................................IV 目 錄..........................................................................................................VII 圖索引..............................................................................................................X 表索引............................................................................................................XIV 第一章 緒論.................................................................................................1 1.1 研究背景..............................................................................................1 1.2 鋅元素之重要性..................................................................................1 1.3 研究動機..............................................................................................2 1.4 論文架構..............................................................................................3 第二章 實驗原理與材料、量測設備介紹..................................................4 2.1 光致螢光(Photoluminescence).............................................................4 2.2 鋅離子感測分子TPN-Cl2之感測原理...............................................5 2.3 電紡絲(Electro-spinning)製程原理.....................................................7 2.4 實驗相關材料特性介紹....................................................................10 2.4.1 感測分子(Probe).....................................................................10 2.4.2 載體(Host)...............................................................................11 2.4.3 生物緩衝液(Dulbecco's modified Eagle medium).................12 2.5 量測相關儀器介紹............................................................................14 2.5.1 螢光光譜儀 HITACHI F-4500...............................................14 2.5.2 CCD光譜儀(Charge Couple Device)與 405nm二極體雷射(Laser Diode).............................................16 第三章 實驗製程方法與量測系統架構.....................................................19 3.1 鋅離子感測元件製程........................................................................19 3.2 以探測方式進行鋅離子感測之概念................................................24 3.3 雙波導結構鋅離子感測器之實際情況............................................26 3.3.1 導光板(Light Guide Plate)......................................................26 3.3.2 收光端波導-光纖(Optical fiber).............................................28 3.3.3 特定波段濾光片(Filter)..........................................................29 3.4量測系統架構.....................................................................................32 3.5 製作雙波導鋅離子感測器................................................................35 第四章 鋅離子感測元件量測結果與討論.................................................38 4.1 Poly HEMA熱固化平板膜使用螢光光譜儀量測結果....................39 4.1.1 Poly HEMA平板膜以DI water中感測鋅離子濃度變化.....39 4.1.2 Poly HEMA平板膜以DMEM中感測鋅離子濃度變化.......43 4.2 電紡絲膜螢光光譜儀鋅離子感測....................................................46 4.3 雙波導結合Poly HEMA 熱固化平板模鋅離子感測.....................49 4.3.1 雙波導鋅離子感測之構想.....................................................49 4.3.2 雙波導結構結合Poly HEMA感測鋅離子濃度(DI water)...52 4.3.3 雙波導結構結合Poly HEMA 感測鋅離子濃度(DMEM)...54 4.4 雙波導結構結合電紡絲膜感測鋅離子濃度....................................56 4.5 比較雙波導系統中影響螢光感測訊號探討與分析........................58 4.5.1 收光端光纖core diameter對收集螢光強度之影響..............58 4.5.2 CCD(Charge Couple Device)對準校正...................................60 4.6 生物細胞樣品之平板膜鋅離子濃度感測........................................62 4.6.1 經處理後之成鼠脊髓神經膠細胞進行平板膜螢光 光譜儀感測.............................................................................62 4.7 Poly HEMA平板膜其他處理測試....................................................67 4.7.1 抽氣並加熱Poly HEMA平板膜...........................................67 4.7.2 Poly HEMA平板膜氣體滅菌之螢光光譜儀感測結果..........69 第五章 研究總結與未來發展目標.............................................................71 參考文獻...........................................................................................................73

    [1]Http://nutrition.bioagri.ntu.edu.tw/ntu_nutrition_new/building_7/zn.aspx
    [2] A.M. Grabrucker, M.Rowan, and C.C. Garner,
    Drug Deliv. Lett.1,13(2011).
    [3] S. L.Sensi, P.Paoletti, J. Y.Koh, E.Aizenman, A. I.Bush,
    and M.Hershfinkel,
    J. Neurosci. 31, 16076 (2011).
    [4] J. H. Syu, Y. K. Cheng, W. Y. Hong, H. P. Wang, Y. C. Lin, H. F. Meng,
    H. W. Zan, S. F. Horng, G.F. Chang, C. H. Hung, Y. C. Chiu,
    W. C. Chen, M. J. Tsai, and H.Cheng, Adv. Funct. Mater.23,1566(2012).
    [5] E. L. Que, D.W. Domaille, and C.J. Chang, Chem. Rev.108,1517(2008).
    [6] Y. Zhang, X. Guo, W. Si, L. Jia, and X. Qian, Org. Lett.10,473(2008).
    [7] H. Wang, Q. Gan, X. J. Wang, L. Xue, S. H. Liu, and H. Jiang,
    Org. Lett.9,4995(2007).
    [8] Y. C. Chao, Y. S. Huang, H. P. Wang, S. M. Fu, C. H. Huang, Y. C. Liang,
    W. C. Yang, Y. S. Huang, G. F. Chang, H. W. Zan, H. F. Meng,
    C. H. Hung, and C. C. Fu, Org. Electron. 12, 1899 (2011).
    [9] S. Wiegärtner, G. Hagen, J. Kita, E.Glaser, J. Spallek, C. Schmaus,
    A. Kießig, A. Bolz, and R. Moos, AMA Conf. 2013–Sensor2013
    5, 14(2013).
    [10] Y. Haga and M. Esashi, Proceedings of the IEEE. 92, 98(2014).
    [11] S. K. Lee, W. F. Boron, and M. D. Parker, Sensors 13, 984(2013).
    [12] W. L. C. Rutten, Annu. Rev. Biomed. Eng. 4, 407(2002).
    [13] M. Brasuel, R. Kopelman, T. J. Miller, R. Tjalkens, and
    M. A. Philbert, Anal. Chem. 73, 2221(2001).
    [14] X. Q. Wang, A. Desai, Y. C. Tai, L. Licklider, and
    T. D. Lee, Micro. Electro. Mechanical Systems21, 523(1999).
    [15] 謝嘉民,賴一凡,林永昌,枋志堯,
    「光激發螢光螢光量測的原理、架構及應用」,奈米通訊,
    第十二卷,第二期,28~35頁(2005)。
    [16] FL Solutions Operation Manual 251-9067-2
    [17] http://www.stellarnet.us/products_spectrometers_EPP2000.htm
    [18] 財經知識庫 - 導光板(Light Guide Plate)
    [19] THORLABS - FT800UMT
    [20] M. J. Tsai, C. F. Weng, N. C. Yu, D. Y. Liou, F. S. Kuo,
    M. C. Huang, W. C. Huang, K. Tam, S. K. Shyue, and
    H. Cheng, Oxi. Med. Cell Longev. 2013, 649809(2013).
    [21] M. J. Tsai, C. F. Weng, S. K. Shyue, D. Y. Liou, C.H. Chen,
    C.W. Chiou, T. H. Yang, H. A. Pan, R. I. Liao, H.S. Kuo,
    M.C. Huang, W.C. Huang, B.J. Hoffer, and H.Cheng, J. Neurosci.
    Res. 85, 2950(2007).
    [22] M. J. Tsai, J. F. Liao, D. Y. Lin, M. C. Huang, D. Y. Liou, H.C. Yang,
    H. J. Lee, Y. T. Chen, C. W. Chi, W.C. Huang, and
    H. Cheng, Neurochem. Int. 57, 867(2010).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE