研究生: |
詹豐銘 Chan, Feng-Ming |
---|---|
論文名稱: |
高密度電漿化學氣相沉積系統之相關製程參數對矽薄膜結晶性和摻雜特性的影響之研究 Study on Effects of Process Paramenters to Crystallinity and Doping Characteristics of Silicon Thin Film Deposited by High Density Plasma Chemical Vapor Deposition (HDPCVD) |
指導教授: |
黃惠良
Hwang, Huey-Liang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 66 |
中文關鍵詞: | 高密度電漿化學氣相沉積系統 、矽晶薄膜 、X光薄膜繞射儀 、霍爾量測 |
外文關鍵詞: | HDPCVD, silicon film, XRD, Hall Measurement |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文在於利用高密度電漿化學沉積系統來進行沉積多晶或微晶矽薄膜,並且探討在不同製程參數下,對於矽薄膜的結晶性和摻雜特性的影響,本論文所探討的參數有氫氣稀釋比、電漿源的瓦數、製程壓力、基板溫度、基板偏壓、摻雜氣體的流量,並藉由XRD、SEM、Hall Measurement等儀器進行分析。
其中氫氣稀釋比對於結晶性的結果是有別於一般的文獻,在我們的實驗中,發現氫氣稀釋比在99%呈現出非晶矽,低於98%甚至更低可發現愈呈現多晶矽的結構。甚至於發現摻雜氣體的濃度對於結晶或摻雜濃度皆有相當程度的影響,本實驗中在摻雜氣體流量0.2sccm時,薄膜會有顯著的摻雜,且在0.2sccm時可才會有結晶矽的出現。
本論文亦著手在N型及P型的矽薄膜摻雜,與一般文獻研究上雷同之處,N型摻雜比P型容易多,至於製程參數上的影響發現在除了氣體摻雜濃度有顯著的決定性之外,電漿大小亦有相當程度影響,P型在電漿源瓦數1000W、可以達到9 x 1018cm-3,在900W時僅有5.3x1015cm-3,N型可以在900W甚至更低即可達到3 x 1020cm-3,不過先決條件是在氣體摻雜流量不能過高的情況下。
In this research work, we use high density plasma chemical vapor deposition system to fabricate uc-Si/poly-Si films, and study the crystallinity and doping characteristics affected by adjustable process parameters, hydrogen dilution ratio, RF power, process pressure, substrate temperature, substrate biasing, doping gas flow rate, and finally analyze by XRD, SEM, Hall Measurement etc.
In our research, we find the anomalous effect by hydrogen dilution ratio different from amount references, here we got the amorphous Si at dilution ratio at 99%, and poly-Si at lower dilution ratio, the lower hydrogen dilution ratio will result better crystallinity. Also we discover the doping gas flow rate will affect no matter the crystallinity or doping concentration. In our experiment, we got remarkable doping concentration at lower gas doping flow rate, 0.2sccm, and the crystallinity is only observed at this flow rate.
We also focus on getting better doping concentration for N-type and P-type. As other references, n-type doping is easier than p-type. In our experiment, we got doping concentration 9 x 1018cm-3 at RF power 1000W,5.3x1015cm-3 at 900W for p-type;and 3 x 1020cm-3 at even lower than 900W for n-type, but in order to get higher doping concentration, lower doping gas flow rate is necessary.
[1] International Energy Agency, IEA
http://www.iea.org/
[2] Energy Information Administration, EIA
http://www.eia.doe.gov/
[3] Energy Information Administration, EIA
http://www.eia.doe.gov/
[4] Chung-Min Chiu, “Study of µc-Si:H films and fabrication of µc-Si:H p-i-n solar cell by ECRCVD”, National Tsing Hua University Master Thesis (2007)
[5] Ye-Wun Zeng, “High performance grating solar cell with low resistivity wafer and passivation using HNO3”, National Tsing Hua University Master Thesis (2008)
[6] 莊嘉琛 編譯,太陽能工程-太陽電池篇 Chapter2, p.9-11 , 全華科技圖書股份有限公司 (1997)
[7] Ye-Wun Zeng, “High performance grating solar cell with low resistivity wafer and passivation using HNO3”, National Tsing Hua University Master Thesis (2008)
[8] National Renewable Energy Laboratory
http://www.nrel.gov/ncpv/
[9] Sze S. M. Physics of semiconductor Devices, 2nd Edition, p.802 (1981)
[10] Ye-Wun Zeng, “High performance grating solar cell with low resistivity wafer and passivation using HNO3”, National Tsing Hua University Master Thesis (2008)
[11] S.O. Kasap, Optoelectronics and Photonics : Principles and Practices,
Prentice Hall, Upper Saddle River, NJ (2001)
[12] 林明獻,太陽能電池技術入門,全華出版社,2007.
[13] Ye-Wun Zeng, “High performance grating solar cell with low resistivity wafer and passivation using HNO3”, National Tsing Hua University Master Thesis (2008)
[14] 林明獻,太陽能電池技術入門,全華出版社,2007.
[15] KRI Report No. 8 : Solar cells, February 2005
[16] K.C. Wang and H. L. Hwang, J. Appl. Phys. 77,(12) (1995).
[17] Ruud E.I. Schropp, Miro Zeman, “Amorphous and microcrystalline silicon solar cell”, Kluwer Academic Publishers.
[18] Chung-Min Chiu, “Study of µc-Si:H films and fabrication of µc-Si:H p-i-n solar cell by ECRCVD”, National Tsing Hua University Master Thesis (2007)
[19] Veprek S, Marecek V, Anna Selvan JA. Solid State Electronics; 11: 683–684.
(1968).
[20] Meier J, Torres P, Platz R, Dubail S, Kroll U, Selvan JAA, Pellaton-Vaucher N,
Hof C, Fischer D, Keppner H, Shah A, Ufert K-D, Giannoule`s P, Ko¨hler J.
Proceedings of the Materials Research Society Symposium; 420: 3–14. (1996).
[21] Kroll U, Meier J, Keppner H, Littlewood SD, Kelly IE, Giannoule`s P, Shah A.
Proceedings of the Materials Research Society Symposium;377: 39–44. (1995).
[22] Poruba A, Fejfar A, Remes Z, Springer J, Vanecek M, Kocka J, Meier J, Torres P,
Shah A.. Journal of Applied Physics; 88: 148–160.( 2000).
[23] R. E. I. Schropp and M. Zeman, “Amorphous and microcrystalline silicon solar cells,” in Modeling, Materials, and Device Technology. Boston, MA: Kluwer Academic, 1998.
[24] J. K. Rath and R. E. I. Schropp, “Incorporation of p-type microcrystalline silicon films in amorphous silicon based solar cells in a superstrate structure,” Sol. Energy Materials and Sol. Cells, vol. 53, pp. 189–203, 1998.
[25] Kato T. IEEE Trans ED 35 (1988) 23.
[26] Inversion RB, Rief R. J Appl Phys 62 (1987) 1675.
[27] Sameshima T, Hara M, Usui S. Jpn J Appl Phys 28 (1989) 1789.
[28] Schaber H, Cutter D, Binder J, Obermeier E. J Appl Phys 54 (1993) 4633.
[29] Kato T. IEEE Trans ED 35 (1988) 23.
[30] Inversion RB, Rief R. J Appl Phys 62 (1987) 1675.
[31] Sameshima T, Hara M, Usui S. Jpn J Appl Phys 28 (1989) 1789.
[32] Schaber H, Cutter D, Binder J, Obermeier E. J Appl Phys 54 (1993) 4633.
[33]http://www.enigmaticconsulting.com/semiconductor_processing/CVD_Fundament
als/plasmas/plasmaTOC.html
[34] Lieberman MA, Lichtenberg AJ, Principle of Plasma Discharge and Materials Processing, 2nd Edition, Wiley-Interscience Publishers, New York (2005).
[35] Hopwood J, Guarnieri CR, Whitehair SJ, Cumo JJ. J Vac Sci Technol A 11 (1993) 147.
[36] Keller JH, Forster JC, Barnes MS. J Vac Sci Technol A 11 (1993) 2487.
[37] Cunge G, Crowley B, Vender D, Turner MM. Plasma Sources Sci Technol 8 (1999) 576.
[38] http://epswww.unm.edu/xrd/xrdbasics.pdf
[39] Brundle CR, Evans CA, Wilson S. Encyclopedia of Materials Characterization, Surfaces, Interfaces, Thin Films, Butterworth-Heinemann, Boston, 1992.
[40] James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon VLSI Technolog, Prentice Hall (2000)
[41] B. Yan, G. Yue, J.M. Owens, J. Yang, and S. Guha, Proc. 4th World Conference on photovoltaic Energy Conversion (2006).
[42] K. Yamamoto, A. Nakajima, M. Yoshimi, T. Sawada, S. Fukuda, T. Suezaki, M.
Ichikawa, Y. koi, M. Goto, T. Meguro, T. Matsuda, M. Kondo, T. Sasaki and Y.
Tawada, Tech. Dig. 15 th International Photovoltaic Science and Engineering Conf. 34-1 (2005) 529.
[43] Yue G, Lorentzen JD, Lin J, Han D, Wang Q. Appl Phys Lett 1999;75:492.
[44] Nishimoto T, Takai M, Miyahara H, Kondo M, Matsuda A. J Non-Cryst Solids
299-302 (2002) 1116.
[45] Takai M, Nishimoto T, Kondo M, Matsuda A. Appl Phys Lett 77 (2000) 2828.
[46] Hwang HL, Wang KC, Hsu KC, Wang RY, Yew TR, Loferski JJ. Appl Surf Sci
113-114 (1997) 741.